These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 2257839)

  • 41. Effects of nonequilibrium on velocity and plate height in reactive capillary electrophoresis.
    Newman CI; McGuffin VL
    Electrophoresis; 2005 Nov; 26(21):4016-25. PubMed ID: 16252325
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of capillary coiling to zone dispersion in capillary zone electrophoresis.
    Kasicka V; Prusík Z; Gas B; Stĕdrý M
    Electrophoresis; 1995 Nov; 16(11):2034-8. PubMed ID: 8748733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophoresis in the presence of gradients: I. Viscosity gradients.
    Guillouzic S; McCormick LC; Slater GW
    Electrophoresis; 2002 Jun; 23(12):1822-32. PubMed ID: 12116125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new type of migrating zone boundary in electrophoresis: 2. Transient sample zone shapes.
    Gebauer P; Malá Z; Bocek P
    Electrophoresis; 2006 Feb; 27(3):519-25. PubMed ID: 16385600
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ampholytes as background electrolytes in capillary zone electrophoresis: sense or nonsense? Histidine as a model ampholyte.
    Beckers JL
    Electrophoresis; 2003 Jan; 24(3):548-56. PubMed ID: 12569544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of flow and diffusion on protein separation in a continuous flow electrophoresis cell: computation procedure.
    Biscans B; Alinat P; Bertrand J; Sanchez V
    Electrophoresis; 1988 Feb; 9(2):84-9. PubMed ID: 3234342
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp.
    Xuan X; Hu G; Li D
    Electrophoresis; 2006 Aug; 27(16):3171-80. PubMed ID: 16850504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ["Golden proportion" and its application to calculate dentition].
    Vadachkoriia NR; Gumberidze NSh; Mandzhavidze NA
    Georgian Med News; 2007 Jan; (142):87-94. PubMed ID: 17327645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving the compatibility of contact conductivity detection with microchip electrophoresis using a bubble cell.
    Noblitt SD; Henry CS
    Anal Chem; 2008 Oct; 80(19):7624-30. PubMed ID: 18771236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sample stacking in CZE using dynamic thermal junctions I. Analytes with low dpKa/dT crossing a single thermally induced pH junction in a BGE with high dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1501-9. PubMed ID: 19350541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic computer simulations of electrophoresis: a versatile research and teaching tool.
    Thormann W; Breadmore MC; Caslavska J; Mosher RA
    Electrophoresis; 2010 Mar; 31(5):726-54. PubMed ID: 20191541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. System zones in capillary zone electrophoresis.
    Gas B; Kenndler E
    Electrophoresis; 2004 Dec; 25(23-24):3901-12. PubMed ID: 15597426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Miniaturizing free-flow electrophoresis - a critical review.
    Kohlheyer D; Eijkel JC; van den Berg A; Schasfoort RB
    Electrophoresis; 2008 Mar; 29(5):977-93. PubMed ID: 18232029
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanistic insights derived from retardation and peak broadening of particles up to 200 nm in diameter in electrophoresis in semidilute polyacrylamide solutions.
    Radko SP; Chrambach A
    Electrophoresis; 1998 Oct; 19(14):2423-31. PubMed ID: 9820962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A method-of-moments formulation for describing hydrodynamic dispersion of analyte streams in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2014 May; 1340():134-8. PubMed ID: 24671038
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature profiles and heat dissipation in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Anal Chem; 2006 Apr; 78(8):2684-93. PubMed ID: 16615780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stochastic simulation of reactive separations in capillary electrophoresis.
    Newman CI; McGuffin VL
    Electrophoresis; 2005 Feb; 26(3):537-47. PubMed ID: 15690455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theory of zone separation in isotachophoresis: a diffusional approach.
    Gebauer P; Bocek P
    Electrophoresis; 1995 Nov; 16(11):1999-2007. PubMed ID: 8748729
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.
    Petersen NJ; Nikolajsen RP; Mogensen KB; Kutter JP
    Electrophoresis; 2004 Jan; 25(2):253-69. PubMed ID: 14743478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.