These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22578437)

  • 41. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Excised Canine Model of Anterior Glottic Web and Its Acoustic, Aerodynamic, and High-speed Measurements.
    Xue C; Pulvermacher A; Calawerts W; Devine E; Jiang J
    J Voice; 2017 Mar; 31(2):246.e21-246.e32. PubMed ID: 27671751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerodynamic profiles of a hemilarynx with a vocal tract.
    Alipour F; Montequin D; Tayama N
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of extent of glottal incompetence on phonation in excised canine larynx models].
    Hou GH; Wang RQ; Yang S; Zhang Y; Xu XL; Zhuang PY
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Oct; 51(10):768-772. PubMed ID: 27765108
    [No Abstract]   [Full Text] [Related]  

  • 47. Initial investigation of anterior approach to arytenoid adduction in excised larynges.
    McCulloch TM; Hoffman MR; McAvoy KE; Jiang JJ
    Laryngoscope; 2013 Apr; 123(4):942-7. PubMed ID: 23400957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct measurement of planar flow rate in an excised canine larynx model.
    Oren L; Khosla S; Dembinski D; Ying J; Gutmark E
    Laryngoscope; 2015 Feb; 125(2):383-8. PubMed ID: 25093928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of the epilarynx area on vocal fold dynamics and the primary voice signal.
    Döllinger M; Berry DA; Luegmair G; Hüttner B; Bohr C
    J Voice; 2012 May; 26(3):285-92. PubMed ID: 21708451
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustic Voice Analysis and Maximum Phonation Time in Relation to Voice Handicap Index Score and Larynx Disease.
    Karlsen T; Sandvik L; Heimdal JH; Aarstad HJ
    J Voice; 2020 Jan; 34(1):161.e27-161.e35. PubMed ID: 30093166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phonation Analysis Combined with 3D Reconstruction of the Thyroarytenoid Muscle in Aged Ovine Ex Vivo Larynx Models.
    Gerstenberger C; Döllinger M; Kniesburges S; Bubalo V; Karbiener M; Schlager H; Sadeghi H; Wendler O; Gugatschka M
    J Voice; 2018 Sep; 32(5):517-524. PubMed ID: 28964638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    J Voice; 2017 Jul; 31(4):513.e15-513.e23. PubMed ID: 28089390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.