These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22578858)

  • 21. Biogenic sulphide plays a major role on the riboflavin-mediated decolourisation of azo dyes under sulphate-reducing conditions.
    Cervantes FJ; Enríquez JE; Galindo-Petatán E; Arvayo H; Razo-Flores E; Field JA
    Chemosphere; 2007 Jun; 68(6):1082-9. PubMed ID: 17350080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes.
    Lorenzo M; Moldes D; Sanromán MA
    Chemosphere; 2006 May; 63(6):912-7. PubMed ID: 16293281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Filamentous Fungi Are Potential Bioremediation Agents of Semi-Synthetic Textile Waste.
    Harper R; Moody SC
    J Fungi (Basel); 2023 Jun; 9(6):. PubMed ID: 37367597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microflora involved in textile dye waste removal.
    Abd El-Rahim WM; Moawad H; Khalafallah M
    J Basic Microbiol; 2003; 43(3):167-74. PubMed ID: 12761767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Industrial dye degradation and detoxification by basidiomycetes belonging to different eco-physiological groups.
    Anastasi A; Prigione V; Varese GC
    J Hazard Mater; 2010 May; 177(1-3):260-7. PubMed ID: 20042288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycoremediation of congo red dye by filamentous fungi.
    Bhattacharya S; Das A; G M; K V; J S
    Braz J Microbiol; 2011 Oct; 42(4):1526-36. PubMed ID: 24031787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria.
    Asad S; Amoozegar MA; Pourbabaee AA; Sarbolouki MN; Dastgheib SM
    Bioresour Technol; 2007 Aug; 98(11):2082-8. PubMed ID: 17055263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of brown-rot fungi in the bioremoval of azo dyes under different conditions.
    Ali N; Hameed A; Ahmed S
    Braz J Microbiol; 2010 Oct; 41(4):907-15. PubMed ID: 24031570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes.
    Salony ; Mishra S; Bisaria VS
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):646-53. PubMed ID: 16261367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta.
    Anastasi A; Spina F; Prigione V; Tigini V; Giansanti P; Varese GC
    Bioresour Technol; 2010 May; 101(9):3067-75. PubMed ID: 20071167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes.
    Anastasi A; Parato B; Spina F; Tigini V; Prigione V; Varese GC
    N Biotechnol; 2011 Dec; 29(1):38-45. PubMed ID: 21911089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia.
    Xiao P; Mori T; Kamei I; Kondo R
    FEMS Microbiol Lett; 2011 Jan; 314(2):140-6. PubMed ID: 21087297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia.
    Xiao P; Mori T; Kamei I; Kiyota H; Takagi K; Kondo R
    Chemosphere; 2011 Sep; 85(2):218-24. PubMed ID: 21724225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical coagulation for textile effluent decolorization.
    Yang CL; McGarrahan J
    J Hazard Mater; 2005 Dec; 127(1-3):40-7. PubMed ID: 16112432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decolourisation of Different Dyes by two
    Zabłocka-Godlewska E; Przystaś W; Grabińska-Sota E
    Water Air Soil Pollut; 2014; 225(2):1846. PubMed ID: 24578585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular determinants of azo reduction activity in the strain Pseudomonas putida MET94.
    Mendes S; Pereira L; Batista C; Martins LO
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):393-405. PubMed ID: 21655981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene.
    Zhuo R; Ma L; Fan F; Gong Y; Wan X; Jiang M; Zhang X; Yang Y
    J Hazard Mater; 2011 Aug; 192(2):855-73. PubMed ID: 21733624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential decolorization of textile dyes in mixtures and the joint effect of laccase and cellobiose dehydrogenase activities present in extracellular extracts from Funalia trogii.
    Tilli S; Ciullini I; Scozzafava A; Briganti F
    Enzyme Microb Technol; 2011 Oct; 49(5):465-71. PubMed ID: 22112619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes.
    Harrelkas F; Paulo A; Alves MM; El Khadir L; Zahraa O; Pons MN; van der Zee FP
    Chemosphere; 2008 Aug; 72(11):1816-22. PubMed ID: 18585754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.