These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 22579008)
21. The effects of human immunodeficiency virus infection on the expression of the drug efflux proteins P-glycoprotein and breast cancer resistance protein in a human intestine model. Ellis K; Marlin JW; Taylor TA; Fitting S; Hauser KF; Rice G; McRae M J Pharm Pharmacol; 2015 Feb; 67(2):178-88. PubMed ID: 25557407 [TBL] [Abstract][Full Text] [Related]
23. P-glycoprotein and breast cancer resistance protein affect disposition of tandutinib, a tyrosine kinase inhibitor. Yang JJ; Milton MN; Yu S; Liao M; Liu N; Wu JT; Gan L; Balani SK; Lee FW; Prakash S; Xia CQ Drug Metab Lett; 2010 Dec; 4(4):201-12. PubMed ID: 20670210 [TBL] [Abstract][Full Text] [Related]
24. Effect of Ursolic Acid on Breast Cancer Resistance Protein-mediated Transport of Rosuvastatin In Vivo and Vitro. Wen JH; Wei XH; Sheng XY; Zhou DQ; Peng HW; Lu YN; Zhou J Chin Med Sci J; 2015 Dec; 30(4):218-25. PubMed ID: 26960302 [TBL] [Abstract][Full Text] [Related]
25. Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. Ma L; Qin Y; Shen Z; Bi H; Hu H; Huang M; Zhou H; Yu L; Jiang H; Zeng S J Ethnopharmacol; 2015 Aug; 172():430-5. PubMed ID: 26183576 [TBL] [Abstract][Full Text] [Related]
26. Mechanistic analysis for drug permeation through intestinal membrane. Hayashi M; Tomita M Drug Metab Pharmacokinet; 2007 Apr; 22(2):67-77. PubMed ID: 17495413 [TBL] [Abstract][Full Text] [Related]
27. Human enteroid monolayers as a potential alternative for Ussing chamber and Caco-2 monolayers to study passive permeability and drug efflux. Streekstra EJ; Keuper-Navis M; van den Heuvel JJMW; van den Broek P; Stommel MWJ; Bervoets S; O'Gorman L; Greupink R; Russel FGM; van de Steeg E; de Wildt SN Eur J Pharm Sci; 2024 Oct; 201():106877. PubMed ID: 39154715 [TBL] [Abstract][Full Text] [Related]
29. Hyperuricemia influences tryptophan metabolism via inhibition of multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP). Dankers AC; Mutsaers HA; Dijkman HB; van den Heuvel LP; Hoenderop JG; Sweep FC; Russel FG; Masereeuw R Biochim Biophys Acta; 2013 Oct; 1832(10):1715-22. PubMed ID: 23665398 [TBL] [Abstract][Full Text] [Related]
30. Expression, localization, and functional characteristics of breast cancer resistance protein in Caco-2 cells. Xia CQ; Liu N; Yang D; Miwa G; Gan LS Drug Metab Dispos; 2005 May; 33(5):637-43. PubMed ID: 15716365 [TBL] [Abstract][Full Text] [Related]
31. Uric acid transporters BCRP and MRP4 involved in chickens uric acid excretion. Ding X; Li M; Peng C; Wang Z; Qian S; Ma Y; Fang T; Feng S; Li Y; Wang X; Li J; Wu J BMC Vet Res; 2019 May; 15(1):180. PubMed ID: 31146764 [TBL] [Abstract][Full Text] [Related]
32. Modulation of Intestinal Transport and Absorption of Topotecan, a BCRP Substrate, by Various Pharmaceutical Excipients and Their Inhibitory Mechanisms of BCRP Transporter. Sawangrat K; Yamashita S; Tanaka A; Morishita M; Kusamori K; Katsumi H; Sakane T; Yamamoto A J Pharm Sci; 2019 Mar; 108(3):1315-1325. PubMed ID: 30389568 [TBL] [Abstract][Full Text] [Related]
33. Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity. Mishra J; Simonsen R; Kumar N J Biol Chem; 2019 Nov; 294(48):18337-18348. PubMed ID: 31653704 [TBL] [Abstract][Full Text] [Related]
34. Using novobiocin as a specific inhibitor of breast cancer resistant protein to assess the role of transporter in the absorption and disposition of topotecan. Su Y; Hu P; Lee SH; Sinko PJ J Pharm Pharm Sci; 2007; 10(4):519-36. PubMed ID: 18261372 [TBL] [Abstract][Full Text] [Related]
35. In vivo assessment of the impact of efflux transporter on oral drug absorption using portal vein-cannulated rats. Matsuda Y; Konno Y; Hashimoto T; Nagai M; Taguchi T; Satsukawa M; Yamashita S Drug Metab Dispos; 2013 Aug; 41(8):1514-21. PubMed ID: 23686319 [TBL] [Abstract][Full Text] [Related]
36. Enteroids to Study Pediatric Intestinal Drug Transport. Streekstra EJ; Keuper-Navis M; van den Heuvel JJMW; van den Broek P; Stommel MWJ; de Boode W; Botden S; Bervoets S; O'Gorman L; Greupink R; Russel FGM; van de Steeg E; de Wildt SN Mol Pharm; 2024 Oct; 21(10):4983-4994. PubMed ID: 39279643 [TBL] [Abstract][Full Text] [Related]
37. Role of intestinal efflux transporters in the intestinal absorption of methotrexate in rats. Yokooji T; Murakami T; Yumoto R; Nagai J; Takano M J Pharm Pharmacol; 2007 Sep; 59(9):1263-70. PubMed ID: 17883898 [TBL] [Abstract][Full Text] [Related]
38. Specific inhibitors of the breast cancer resistance protein (BCRP). Pick A; Klinkhammer W; Wiese M ChemMedChem; 2010 Sep; 5(9):1498-505. PubMed ID: 20632361 [TBL] [Abstract][Full Text] [Related]
39. Solitary Inhibition of the Breast Cancer Resistance Protein Efflux Transporter Results in a Clinically Significant Drug-Drug Interaction with Rosuvastatin by Causing up to a 2-Fold Increase in Statin Exposure. Elsby R; Martin P; Surry D; Sharma P; Fenner K Drug Metab Dispos; 2016 Mar; 44(3):398-408. PubMed ID: 26700956 [TBL] [Abstract][Full Text] [Related]
40. Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model. Lin X; Skolnik S; Chen X; Wang J Drug Metab Dispos; 2011 Feb; 39(2):265-74. PubMed ID: 21051535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]