These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22579249)
1. Staphylococcus aureus FabI: inhibition, substrate recognition, and potential implications for in vivo essentiality. Schiebel J; Chang A; Lu H; Baxter MV; Tonge PJ; Kisker C Structure; 2012 May; 20(5):802-13. PubMed ID: 22579249 [TBL] [Abstract][Full Text] [Related]
2. Mechanism and inhibition of saFabI, the enoyl reductase from Staphylococcus aureus. Xu H; Sullivan TJ; Sekiguchi J; Kirikae T; Ojima I; Stratton CF; Mao W; Rock FL; Alley MR; Johnson F; Walker SG; Tonge PJ Biochemistry; 2008 Apr; 47(14):4228-36. PubMed ID: 18335995 [TBL] [Abstract][Full Text] [Related]
3. Methyl-branched fatty acids, inhibitors of enoyl-ACP reductase with antibacterial activity from Streptomyces sp. A251. Zheng CJ; Sohn MJ; Chi SW; Kim WG J Microbiol Biotechnol; 2010 May; 20(5):875-80. PubMed ID: 20519910 [TBL] [Abstract][Full Text] [Related]
4. An ordered water channel in Staphylococcus aureus FabI: unraveling the mechanism of substrate recognition and reduction. Schiebel J; Chang A; Merget B; Bommineni GR; Yu W; Spagnuolo LA; Baxter MV; Tareilus M; Tonge PJ; Kisker C; Sotriffer CA Biochemistry; 2015 Mar; 54(10):1943-55. PubMed ID: 25706582 [TBL] [Abstract][Full Text] [Related]
5. Benzimidazole-Based FabI Inhibitors: A Promising Novel Scaffold for Anti-staphylococcal Drug Development. Mistry TL; Truong L; Ghosh AK; Johnson ME; Mehboob S ACS Infect Dis; 2017 Jan; 3(1):54-61. PubMed ID: 27756129 [TBL] [Abstract][Full Text] [Related]
6. Rational optimization of drug-target residence time: insights from inhibitor binding to the Staphylococcus aureus FabI enzyme-product complex. Chang A; Schiebel J; Yu W; Bommineni GR; Pan P; Baxter MV; Khanna A; Sotriffer CA; Kisker C; Tonge PJ Biochemistry; 2013 Jun; 52(24):4217-28. PubMed ID: 23697754 [TBL] [Abstract][Full Text] [Related]
7. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. Massengo-Tiassé RP; Cronan JE J Biol Chem; 2008 Jan; 283(3):1308-1316. PubMed ID: 18032386 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into the dimer-tetramer transition of FabI from Bacillus anthracis. Kim HT; Kim S; Na BK; Chung J; Hwang E; Hwang KY Biochem Biophys Res Commun; 2017 Nov; 493(1):28-33. PubMed ID: 28935372 [TBL] [Abstract][Full Text] [Related]
9. Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI). Yao J; Maxwell JB; Rock CO J Biol Chem; 2013 Dec; 288(51):36261-71. PubMed ID: 24189061 [TBL] [Abstract][Full Text] [Related]
10. Spiro-naphthyridinone piperidines as inhibitors of S. aureus and E. coli enoyl-ACP reductase (FabI). Sampson PB; Picard C; Handerson S; McGrath TE; Domagala M; Leeson A; Romanov V; Awrey DE; Thambipillai D; Bardouniotis E; Kaplan N; Berman JM; Pauls HW Bioorg Med Chem Lett; 2009 Sep; 19(18):5355-8. PubMed ID: 19682901 [TBL] [Abstract][Full Text] [Related]
11. The kalimantacin/batumin biosynthesis operon encodes a self-resistance isoform of the FabI bacterial target. Mattheus W; Masschelein J; Gao LJ; Herdewijn P; Landuyt B; Volckaert G; Lavigne R Chem Biol; 2010 Oct; 17(10):1067-71. PubMed ID: 21035728 [TBL] [Abstract][Full Text] [Related]
12. Meleagrin, a new FabI inhibitor from Penicillium chryosogenum with at least one additional mode of action. Zheng CJ; Sohn MJ; Lee S; Kim WG PLoS One; 2013; 8(11):e78922. PubMed ID: 24312171 [TBL] [Abstract][Full Text] [Related]
13. Chalcomoracin and moracin C, new inhibitors of Staphylococcus aureus enoyl-acyl carrier protein reductase from Morus alba. Kim YJ; Sohn MJ; Kim WG Biol Pharm Bull; 2012; 35(5):791-5. PubMed ID: 22687419 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. Heath RJ; Li J; Roland GE; Rock CO J Biol Chem; 2000 Feb; 275(7):4654-9. PubMed ID: 10671494 [TBL] [Abstract][Full Text] [Related]
15. Complestatin exerts antibacterial activity by the inhibition of fatty acid synthesis. Kwon YJ; Kim HJ; Kim WG Biol Pharm Bull; 2015; 38(5):715-21. PubMed ID: 25947917 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures and kinetic properties of enoyl-acyl carrier protein reductase I from Candidatus Liberibacter asiaticus. Jiang L; Gao Z; Li Y; Wang S; Dong Y Protein Sci; 2014 Apr; 23(4):366-77. PubMed ID: 24407918 [TBL] [Abstract][Full Text] [Related]
17. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Lu H; Tonge PJ Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820 [TBL] [Abstract][Full Text] [Related]
18. Verrulactone C with an unprecedented dispiro skeleton, a new inhibitor of Staphylococcus aureus enoyl-ACP reductase, from Penicillium verruculosum F375. Kim N; Sohn MJ; Koshino H; Kim EH; Kim WG Bioorg Med Chem Lett; 2014 Jan; 24(1):83-6. PubMed ID: 24332629 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into Staphylococcus aureus enoyl-ACP reductase (FabI), in complex with NADP and triclosan. Priyadarshi A; Kim EE; Hwang KY Proteins; 2010 Feb; 78(2):480-6. PubMed ID: 19768684 [No Abstract] [Full Text] [Related]