BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 22579363)

  • 1. Determination of diffusion coefficients for supercritical fluids.
    Medina I
    J Chromatogr A; 2012 Aug; 1250():124-40. PubMed ID: 22579363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning behaviour of organic compounds between ionic liquids and supercritical fluids.
    Roth M
    J Chromatogr A; 2009 Mar; 1216(10):1861-80. PubMed ID: 18952213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized linear solvation energy model applied to solute partition coefficients in ionic liquid-supercritical carbon dioxide systems.
    Planeta J; Karásek P; Hohnová B; Sťavíková L; Roth M
    J Chromatogr A; 2012 Aug; 1250():54-62. PubMed ID: 22552202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using supercritical fluid chromatography to determine diffusion coefficients of 1,2-diethylbenzene, 1,4-diethylbenzene, 5-tert-butyl-m-xylene and phenylacetylene in supercritical carbon dioxide.
    Pizarro C; Suárez-Iglesias O; Medina I; Bueno JL
    J Chromatogr A; 2007 Oct; 1167(2):202-9. PubMed ID: 17850810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of diffusion coefficients by supercritical fluid chromatography: Effects of mobile phase mean velocity and column orientation.
    Lin R; Tavlarides LL
    J Chromatogr A; 2010 Jun; 1217(26):4454-62. PubMed ID: 20493492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of the chromatographic impulse response method in supercritical fluid chromatography.
    Kong CY; Funazukuri T; Kagei S; Wang G; Lu F; Sako T
    J Chromatogr A; 2012 Aug; 1250():141-56. PubMed ID: 22564697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal model for accurate calculation of tracer diffusion coefficients in gas, liquid and supercritical systems.
    Lito PF; Magalhães AL; Gomes JR; Silva CM
    J Chromatogr A; 2013 May; 1290():1-26. PubMed ID: 23601290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation processes for organic molecules using SCF Technologies.
    Daintree LS; Kordikowski A; York P
    Adv Drug Deliv Rev; 2008 Feb; 60(3):351-72. PubMed ID: 18006179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion coefficients of phenylbutazone in supercritical CO2 and in ethanol.
    Kong CY; Watanabe K; Funazukuri T
    J Chromatogr A; 2013 Mar; 1279():92-7. PubMed ID: 23369749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of stationary phases in supercritical fluid chromatography with the solvation parameter model V. Elaboration of a reduced set of test solutes for rapid evaluation.
    West C; Lesellier E
    J Chromatogr A; 2007 Oct; 1169(1-2):205-19. PubMed ID: 17900598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of system variables involved in packed column supercritical fluid chromatography of stavudine taken as model analyte using response surface methodology along with study of thermodynamic parameters.
    Kaul N; Agrawal H; Paradkar AR; Mahadik KR
    J Pharm Biomed Anal; 2007 Jan; 43(2):471-80. PubMed ID: 16935453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possibility of predicting separations in supercritical fluid chromatography with the solvation parameter model.
    West C; Ogden J; Lesellier E
    J Chromatogr A; 2009 Jul; 1216(29):5600-7. PubMed ID: 19535088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical fluid chromatography-mass spectrometry for chemical analysis.
    Li F; Hsieh Y
    J Sep Sci; 2008 May; 31(8):1231-7. PubMed ID: 18366029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography.
    Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2011 Sep; 1218(37):6531-9. PubMed ID: 21821256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2.
    Cheng CH; Du TB; Pi HC; Jang SM; Lin YH; Lee HT
    Bioresour Technol; 2011 Nov; 102(21):10151-3. PubMed ID: 21917450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impulse response techniques to measure binary diffusion coefficients under supercritical conditions.
    Funazukuri T; Kong CY; Kagei S
    J Chromatogr A; 2004 May; 1037(1-2):411-29. PubMed ID: 15214679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer.
    Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of supercritical fluid extraction of phenanthrene from clayey soil.
    Elektorowicz M; El-Sadi H; Ayadat T
    J Sep Sci; 2008 May; 31(8):1381-6. PubMed ID: 18366027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.
    Chao KP; Wang P; Wang YT
    J Hazard Mater; 2007 Apr; 142(1-2):227-35. PubMed ID: 17010510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of extractability of pine bark using supercritical CO(2) extraction and different solvents: optimization and prediction.
    Yesil-Celiktas O; Otto F; Gruener S; Parlar H
    J Agric Food Chem; 2009 Jan; 57(2):341-7. PubMed ID: 19113873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.