BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 22579386)

  • 21. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast,
    Kurylenko OO; Ruchala J; Vasylyshyn RV; Stasyk OV; Dmytruk OV; Dmytruk KV; Sibirny AA
    Biotechnol Biofuels; 2018; 11():197. PubMed ID: 30034524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
    Wahlbom CF; Cordero Otero RR; van Zyl WH; Hahn-Hägerdal B; Jönsson LJ
    Appl Environ Microbiol; 2003 Feb; 69(2):740-6. PubMed ID: 12570990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae.
    Kobayashi Y; Sahara T; Ohgiya S; Kamagata Y; Fujimori KE
    AMB Express; 2018 Aug; 8(1):139. PubMed ID: 30151682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Limiting metabolic steps in the utilization of D-xylose by recombinant Ralstonia eutropha W50-EAB].
    Wang L; Liu G; Zhang Y; Wang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):164-75. PubMed ID: 25958696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene.
    Schaaff-Gerstenschläger I; Mannhaupt G; Vetter I; Zimmermann FK; Feldmann H
    Eur J Biochem; 1993 Oct; 217(1):487-92. PubMed ID: 7916691
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae.
    Johansson B; Hahn-Hägerdal B
    Yeast; 2002 Feb; 19(3):225-31. PubMed ID: 11816030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli.
    Gu Y; Li J; Zhang L; Chen J; Niu L; Yang Y; Yang S; Jiang W
    J Biotechnol; 2009 Sep; 143(4):284-7. PubMed ID: 19695296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production.
    Fan JX; Yang XX; Song JZ; Huang XM; Cheng ZX; Yao L; Juba OS; Liang Q; Yang Q; Odeph M; Sun Y; Wang Y
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1023-36. PubMed ID: 21394668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach.
    Jin YS; Alper H; Yang YT; Stephanopoulos G
    Appl Environ Microbiol; 2005 Dec; 71(12):8249-56. PubMed ID: 16332810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae].
    Shen Y; Wang Y; Bao XM; Qu YB
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peroxisomal Fba2p and Tal2p complementally function in the rearrangement pathway for xylulose 5-phosphate in the methylotrophic yeast Pichia pastoris.
    Fukuoka H; Kawase T; Oku M; Yurimoto H; Sakai Y; Hayakawa T; Nakagawa T
    J Biosci Bioeng; 2019 Jul; 128(1):33-38. PubMed ID: 30711353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica.
    Dobrowolski A; Mirończuk AM
    Microb Cell Fact; 2020 Jul; 19(1):138. PubMed ID: 32653007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.