These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 22579471)
1. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli. Park JM; Vinuselvi P; Lee SK Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471 [TBL] [Abstract][Full Text] [Related]
2. Catabolite repression of the propionate catabolic genes in Escherichia coli and Salmonella enterica: evidence for involvement of the cyclic AMP receptor protein. Lee SK; Newman JD; Keasling JD J Bacteriol; 2005 Apr; 187(8):2793-800. PubMed ID: 15805526 [TBL] [Abstract][Full Text] [Related]
3. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Escalante A; Salinas Cervantes A; Gosset G; Bolívar F Appl Microbiol Biotechnol; 2012 Jun; 94(6):1483-94. PubMed ID: 22573269 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous glucose and xylose utilization by an Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128 [TBL] [Abstract][Full Text] [Related]
5. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Ammar EM; Wang X; Rao CV Sci Rep; 2018 Jan; 8(1):609. PubMed ID: 29330542 [TBL] [Abstract][Full Text] [Related]
6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Jarmander J; Hallström BM; Larsson G Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675 [TBL] [Abstract][Full Text] [Related]
8. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule. Schubert C; Unden G Microb Physiol; 2024; 34(1):108-120. PubMed ID: 38432210 [TBL] [Abstract][Full Text] [Related]
10. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. Brückner R; Titgemeyer F FEMS Microbiol Lett; 2002 Apr; 209(2):141-8. PubMed ID: 12007797 [TBL] [Abstract][Full Text] [Related]
11. Biofilm Growth of Escherichia coli Is Subject to cAMP-Dependent and cAMP-Independent Inhibition. Sutrina SL; Daniel K; Lewis M; Charles NT; Anselm CK; Thomas N; Holder N J Mol Microbiol Biotechnol; 2015; 25(2-3):209-25. PubMed ID: 26159080 [TBL] [Abstract][Full Text] [Related]
12. A new carbon catabolite repression mutation of Escherichia coli, mlc∗, and its use for producing isobutanol. Nakashima N; Tamura T J Biosci Bioeng; 2012 Jul; 114(1):38-44. PubMed ID: 22561880 [TBL] [Abstract][Full Text] [Related]
13. The mechanisms of carbon catabolite repression in bacteria. Deutscher J Curr Opin Microbiol; 2008 Apr; 11(2):87-93. PubMed ID: 18359269 [TBL] [Abstract][Full Text] [Related]
14. Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli. Hogema BM; Arents JC; Inada T; Aiba H; van Dam K; Postma PW Mol Microbiol; 1997 May; 24(4):857-67. PubMed ID: 9194712 [TBL] [Abstract][Full Text] [Related]
15. Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Mao XJ; Huo YX; Buck M; Kolb A; Wang YP Nucleic Acids Res; 2007; 35(5):1432-40. PubMed ID: 17284458 [TBL] [Abstract][Full Text] [Related]
16. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320 [TBL] [Abstract][Full Text] [Related]
17. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis. Flores S; Flores N; de Anda R; González A; Escalante A; Sigala JC; Gosset G; Bolívar F J Mol Microbiol Biotechnol; 2005; 10(1):51-63. PubMed ID: 16491026 [TBL] [Abstract][Full Text] [Related]
18. Relief of catabolite repression in a cAMP-independent catabolite gene activator mutant of Escherichia coli. Karimova G; Ladant D; Ullmann A Res Microbiol; 2004 Mar; 155(2):76-9. PubMed ID: 14990258 [TBL] [Abstract][Full Text] [Related]
19. Effect of glucose or glycerol as the sole carbon source on gene expression from the Salmonella prpBCDE promoter in Escherichia coli. Lee SK; Keasling JD Biotechnol Prog; 2006; 22(6):1547-51. PubMed ID: 17137300 [TBL] [Abstract][Full Text] [Related]