BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22579514)

  • 1. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities.
    Cheng Y; Liu X; Guo J; Liu F; Li Z; Xu G; Cui P
    Nanotechnology; 2009 Feb; 20(5):055604. PubMed ID: 19417351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Electrorheological Properties of Elastomers Containing TiO₂/Urea Core-Shell Particles.
    Niu C; Dong X; Qi M
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24855-63. PubMed ID: 26492099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on 'Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities'.
    Zhang K; Choi BI; Choi HJ; Jhon MS
    Nanotechnology; 2010 Sep; 21(37):378001. PubMed ID: 20714053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core/shell nanocomposite based on the local polarization and its electrorheological behavior.
    Wang B; Zhao X
    Langmuir; 2005 Jul; 21(14):6553-9. PubMed ID: 15982066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology.
    Liu YD; Fang FF; Choi HJ
    Langmuir; 2010 Aug; 26(15):12849-54. PubMed ID: 20593791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Electroresponsive Performance of Double-Shell SiO2/TiO2 Hollow Nanoparticles.
    Lee S; Lee J; Hwang SH; Yun J; Jang J
    ACS Nano; 2015 May; 9(5):4939-49. PubMed ID: 25844731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturated orientational polarization of polar molecules in giant electrorheological fluids.
    Tan P; Tian WJ; Wu XF; Huang JY; Zhou LW; Huang JP
    J Phys Chem B; 2009 Jul; 113(27):9092-7. PubMed ID: 19530664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of low frequency dielectric spectroscopy to analyze the electrorheological behavior of monodisperse yolk-shell SiO2/TiO2 nanospheres.
    Guo X; Chen Y; Li D; Li G; Xin M; Zhao M; Yang C; Hao C; Lei Q
    Soft Matter; 2016 Jan; 12(2):546-54. PubMed ID: 26497846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ sol-gel preparation of polysaccharide/titanium oxide hybrid colloids and their electrorheological effect.
    Zhao XP; Duan X
    J Colloid Interface Sci; 2002 Jul; 251(2):376-80. PubMed ID: 16290743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interfacial Polarization-Induced Electrorheological Effect.
    Hao T
    J Colloid Interface Sci; 1998 Oct; 206(1):240-246. PubMed ID: 9761649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Electrorheological Performance of Nb-Doped TiO2 Microspheres Based Suspensions and Their Behavior Characteristics in Low-Frequency Dielectric Spectroscopy.
    Guo X; Chen Y; Su M; Li D; Li G; Li C; Tian Y; Hao C; Lei Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26624-32. PubMed ID: 26570989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles.
    Hsiao IL; Huang YJ
    Chem Res Toxicol; 2011 Mar; 24(3):303-13. PubMed ID: 21341804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.