These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 22579572)
1. GABA transporters mediate glycine release from cerebellum nerve endings: roles of Ca(2+)channels, mitochondrial Na(+)/Ca(2+) exchangers, vesicular GABA/glycine transporters and anion channels. Romei C; Raiteri M; Raiteri L Neurochem Int; 2012 Jul; 61(2):133-40. PubMed ID: 22579572 [TBL] [Abstract][Full Text] [Related]
2. A new function for glycine GlyT2 transporters: Stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca(2+)-dependent anion channels. Milanese M; Romei C; Usai C; Oliveri M; Raiteri L J Neurosci Res; 2014 Mar; 92(3):398-408. PubMed ID: 24273061 [TBL] [Abstract][Full Text] [Related]
3. Glycine release provoked by disturbed Na⁺, Na⁺ and Ca²⁺ homeostasis in cerebellar nerve endings: roles of Ca²⁺ channels, Na⁺/Ca²⁺ exchangers and GlyT2 transporter reversal. Romei C; Di Prisco S; Raiteri M; Raiteri L J Neurochem; 2011 Oct; 119(1):50-63. PubMed ID: 21790607 [TBL] [Abstract][Full Text] [Related]
4. GABA release provoked by disturbed Na(+), K(+) and Ca(2+) homeostasis in cerebellar nerve endings: roles of Ca(2+) channels, Na(+)/Ca(2+) exchangers and GAT1 transporter reversal. Romei C; Sabolla C; Raiteri L Neurochem Int; 2014 Jun; 72():1-9. PubMed ID: 24726769 [TBL] [Abstract][Full Text] [Related]
5. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal. Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377 [TBL] [Abstract][Full Text] [Related]
6. High-affinity GABA uptake by neuronal GAT1 transporters provokes release of [(3)H]GABA by homoexchange and through GAT1-independent Ca(2+)-mediated mechanisms. Romei C; Sabolla C; Raiteri L Neuropharmacology; 2015 Jan; 88():164-70. PubMed ID: 25150942 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of [(3)H]glycine release from mouse spinal cord synaptosomes selectively labeled through GLYT2 transporters. Luccini E; Raiteri L J Neurochem; 2007 Dec; 103(6):2439-48. PubMed ID: 17944872 [TBL] [Abstract][Full Text] [Related]
8. σ-1 Receptor agonist SKF10047 inhibits glutamate release in rat cerebral cortex nerve endings. Lu CW; Lin TY; Wang CC; Wang SJ J Pharmacol Exp Ther; 2012 May; 341(2):532-42. PubMed ID: 22357973 [TBL] [Abstract][Full Text] [Related]
9. Glycine taken up through GLYT1 and GLYT2 heterotransporters into glutamatergic axon terminals of mouse spinal cord elicits release of glutamate by homotransporter reversal and through anion channels. Raiteri L; Stigliani S; Siri A; Passalacqua M; Melloni E; Raiteri M; Bonanno G Biochem Pharmacol; 2005 Jan; 69(1):159-68. PubMed ID: 15588724 [TBL] [Abstract][Full Text] [Related]
10. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes). Hung KL; Wang CC; Huang CY; Wang SJ Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169 [TBL] [Abstract][Full Text] [Related]
11. Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord. Raiteri L; Stigliani S; Usai C; Diaspro A; Paluzzi S; Milanese M; Raiteri M; Bonanno G Neurochem Int; 2008 Jan; 52(1-2):103-12. PubMed ID: 17597258 [TBL] [Abstract][Full Text] [Related]
12. Glycine is taken up through GLYT1 and GLYT2 transporters into mouse spinal cord axon terminals and causes vesicular and carrier-mediated release of its proposed co-transmitter GABA. Raiteri L; Raiteri M; Bonanno G J Neurochem; 2001 Mar; 76(6):1823-32. PubMed ID: 11259500 [TBL] [Abstract][Full Text] [Related]
13. HTDP-2, a new synthetic compound, inhibits glutamate release through reduction of voltage-dependent Ca²⁺ influx in rat cerebral cortex nerve terminals. Lin TY; Lu CW; Huang SK; Chou SS; Kuo YC; Chou SH; Tzeng WF; Leu CY; Huang RF; Liew YF; Wang SJ Pharmacology; 2011; 88(1-2):26-32. PubMed ID: 21720189 [TBL] [Abstract][Full Text] [Related]
14. Ionic dysregulations typical of ischemia provoke release of glycine and GABA by multiple mechanisms. Luccini E; Romei C; Di Prisco S; Raiteri M; Raiteri L J Neurochem; 2010 Aug; 114(4):1074-84. PubMed ID: 20524963 [TBL] [Abstract][Full Text] [Related]
15. Idebenone inhibition of glutamate release from rat cerebral cortex nerve endings by suppression of voltage-dependent calcium influx and protein kinase A. Chang Y; Lin YW; Wang SJ Naunyn Schmiedebergs Arch Pharmacol; 2011 Jul; 384(1):59-70. PubMed ID: 21541760 [TBL] [Abstract][Full Text] [Related]
16. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals. Sitges M; Galindo CA Neurochem Int; 2005 Jan; 46(1):53-60. PubMed ID: 15567515 [TBL] [Abstract][Full Text] [Related]
17. Astaxanthin inhibits glutamate release in rat cerebral cortex nerve terminals via suppression of voltage-dependent Ca(2+) entry and mitogen-activated protein kinase signaling pathway. Lin TY; Lu CW; Wang SJ J Agric Food Chem; 2010 Jul; 58(14):8271-8. PubMed ID: 20593829 [TBL] [Abstract][Full Text] [Related]
18. Glycinergic nerve endings in hippocampus and spinal cord release glycine by different mechanisms in response to identical depolarizing stimuli. Luccini E; Romei C; Raiteri L J Neurochem; 2008 Jun; 105(6):2179-89. PubMed ID: 18298662 [TBL] [Abstract][Full Text] [Related]
19. Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Lin TY; Lu CW; Tien LT; Chuang SH; Wang YR; Chang WH; Wang SJ Neurochem Int; 2009 Jul; 54(8):506-12. PubMed ID: 19428795 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of glutamate release by bupropion in rat cerebral cortex nerve terminals. Lin TY; Yang TT; Lu CW; Wang SJ Prog Neuropsychopharmacol Biol Psychiatry; 2011 Mar; 35(2):598-606. PubMed ID: 21216268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]