These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22579653)

  • 1. Proteomic research in bivalves: towards the identification of molecular markers of aquatic pollution.
    Campos A; Tedesco S; Vasconcelos V; Cristobal S
    J Proteomics; 2012 Jul; 75(14):4346-59. PubMed ID: 22579653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.
    Hutchinson TH; Lyons BP; Thain JE; Law RJ
    Mar Pollut Bull; 2013 Sep; 74(2):517-25. PubMed ID: 23820191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can proteomics contribute to biomonitoring of aquatic pollution? A critical review.
    López-Pedrouso M; Varela Z; Franco D; Fernández JA; Aboal JR
    Environ Pollut; 2020 Dec; 267():115473. PubMed ID: 32882465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem.
    Zhou Q; Zhang J; Fu J; Shi J; Jiang G
    Anal Chim Acta; 2008 Jan; 606(2):135-50. PubMed ID: 18082645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Environment and health in Gela (Sicily): present knowledge and prospects for future studies].
    Musmeci L; Bianchi F; Carere M; Cori L
    Epidemiol Prev; 2009; 33(3 Suppl 1):7-12. PubMed ID: 19776462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach.
    Balbi T; Auguste M; Ciacci C; Canesi L
    Front Immunol; 2021; 12():618726. PubMed ID: 33679759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helminths and protozoans of aquatic organisms as bioindicators of chemical pollution.
    Vidal Martínez VM
    Parassitologia; 2007 Sep; 49(3):177-84. PubMed ID: 18410077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment.
    Gouveia D; Almunia C; Cogne Y; Pible O; Degli-Esposti D; Salvador A; Cristobal S; Sheehan D; Chaumot A; Geffard O; Armengaud J
    J Proteomics; 2019 Apr; 198():66-77. PubMed ID: 30529745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges for biological interpretation of environmental proteomics data in non-model organisms.
    Dowd WW
    Integr Comp Biol; 2012 Nov; 52(5):705-20. PubMed ID: 22730495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Marine environmental assessment approaches based on biomarker index: a review].
    Meng FP; Yang FF; Cheng FL
    Ying Yong Sheng Tai Xue Bao; 2012 Apr; 23(4):1128-36. PubMed ID: 22803485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming.
    Silvestre F; Gillardin V; Dorts J
    Integr Comp Biol; 2012 Nov; 52(5):681-94. PubMed ID: 22641836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multivariate discriminant analysis distinguishes metal- from non metal-related biomarker responses in the clam Chamaelea gallina.
    Rodríguez-Ortega MJ; Rodríguez-Ariza A; Gómez-Ariza JL; Muñoz-Serrano A; López-Barea J
    Mar Pollut Bull; 2009 Jan; 58(1):64-71. PubMed ID: 18945456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxisome proliferation as a biomarker in environmental pollution assessment.
    Cajaraville MP; Cancio I; Ibabe A; Orbea A
    Microsc Res Tech; 2003 Jun; 61(2):191-202. PubMed ID: 12740826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of river water quality using an integrated physicochemical, biological and ecotoxicological approach.
    Serpa D; Keizer JJ; Cassidy J; Cuco A; Silva V; Gonçalves F; Cerqueira M; Abrantes N
    Environ Sci Process Impacts; 2014 May; 16(6):1434-44. PubMed ID: 24715158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of proteomics to assess pollutant response of clams from the Doñana bank of Guadalquivir Estuary (SW Spain).
    Romero-Ruiz A; Carrascal M; Alhama J; Gómez-Ariza JL; Abian J; López-Barea J
    Proteomics; 2006 Apr; 6 Suppl 1():S245-55. PubMed ID: 16544285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocarbon biomarkers responses in the bivalve, Tivela mactroides, exposed to polluted sediments.
    Sardi AE; Ramos R; García EM
    Bull Environ Contam Toxicol; 2013 Jan; 90(1):1-8. PubMed ID: 23085679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three simple biomarkers useful in conducting water quality assessments with bivalve mollusks.
    Blaise C; Gagné F; Burgeot T
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27662-27669. PubMed ID: 27230145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the role of omics in assessing ecosystem health: Perspectives from the Canadian environmental monitoring program.
    Bahamonde PA; Feswick A; Isaacs MA; Munkittrick KR; Martyniuk CJ
    Environ Toxicol Chem; 2016 Jan; 35(1):20-35. PubMed ID: 26771350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.