BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22579685)

  • 1. The in vitro inhibition effect of 2 nm gold nanoparticles on non-enzymatic glycation of human serum albumin.
    Seneviratne C; Narayanan R; Liu W; Dain JA
    Biochem Biophys Res Commun; 2012 Jun; 422(3):447-54. PubMed ID: 22579685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in vitro glycation of human serum albumin in the presence of Zn(II).
    Seneviratne C; Dombi GW; Liu W; Dain JA
    J Inorg Biochem; 2011 Dec; 105(12):1548-54. PubMed ID: 22071077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quercetin as a finer substitute to aminoguanidine in the inhibition of glycation products.
    Ashraf JM; Shahab U; Tabrez S; Lee EJ; Choi I; Ahmad S
    Int J Biol Macromol; 2015; 77():188-92. PubMed ID: 25799884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiglycating potential of gum arabic capped-silver nanoparticles.
    Ashraf JM; Ansari MA; Choi I; Khan HM; Alzohairy MA
    Appl Biochem Biotechnol; 2014 Sep; 174(1):398-410. PubMed ID: 25080376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin.
    Liu W; Cohenford MA; Frost L; Seneviratne C; Dain JA
    Int J Nanomedicine; 2014; 9():5461-9. PubMed ID: 25473284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonenzymatic glycation of DNA nucleosides with reducing sugars.
    Dutta U; Cohenford MA; Dain JA
    Anal Biochem; 2005 Oct; 345(2):171-80. PubMed ID: 16143291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression in advanced glycation adducts of human serum albumin by bio-enzymatically synthesized gold and silver nanoformulations: A potential tool to counteract hyperglycemic condition.
    Ahmed F; Husain Q
    Biochimie; 2019 Jul; 162():66-76. PubMed ID: 30959081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein seeding of gold nanoparticles and mechanism of glycation sensing.
    Ghoshmoulick R; Bhattacharya J; Mitra CK; Basak S; Dasgupta AK
    Nanomedicine; 2007 Sep; 3(3):208-14. PubMed ID: 17692576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate as an antiglycating agent for human serum albumin.
    Sattarahmady N; Khodagholi F; Moosavi-Movahedi AA; Heli H; Hakimelahi GH
    Int J Biol Macromol; 2007 Jul; 41(2):180-4. PubMed ID: 17350677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naturally occurring inhibitors against the formation of advanced glycation end-products.
    Peng X; Ma J; Chen F; Wang M
    Food Funct; 2011 Jun; 2(6):289-301. PubMed ID: 21779567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.
    Wang Y; Ni Y
    Talanta; 2014 Feb; 119():320-30. PubMed ID: 24401421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells.
    Rahim M; Iram S; Khan MS; Khan MS; Shukla AR; Srivastava AK; Ahmad S
    Colloids Surf B Biointerfaces; 2014 May; 117():473-9. PubMed ID: 24368207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-glycation activity of gold nanoparticles.
    Singha S; Bhattacharya J; Datta H; Dasgupta AK
    Nanomedicine; 2009 Mar; 5(1):21-9. PubMed ID: 18676206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study.
    Alam MM; Ahmad I; Naseem I
    Int J Biol Macromol; 2015 Aug; 79():336-43. PubMed ID: 25982953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the interaction of human serum albumin with ciprofloxacin in the presence of silver nanoparticles of three sizes: multispectroscopic and ζ potential investigation.
    Iranfar H; Rajabi O; Salari R; Chamani J
    J Phys Chem B; 2012 Feb; 116(6):1951-64. PubMed ID: 22224861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary electrophoretic analysis of advanced glycation endproducts formed from the reaction of reducing sugars with the amino group of glucosamine.
    Dutta U; Dain JA
    Anal Biochem; 2005 Aug; 343(2):237-43. PubMed ID: 15992760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition.
    Goy-López S; Juárez J; Alatorre-Meda M; Casals E; Puntes VF; Taboada P; Mosquera V
    Langmuir; 2012 Jun; 28(24):9113-26. PubMed ID: 22439664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of aminoguanidine and copper(II) ions on the formation of advanced glycosylation end products. In vitro study on human serum albumin.
    Jakus V; Bauerová K; Rietbrock N
    Arzneimittelforschung; 2001; 51(4):280-3. PubMed ID: 11367867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced glycated human serum albumin as AGE-carrier protein in enzyme-linked immunosorbent assay.
    Benko B; Turk Z
    Clin Lab; 2008; 54(9-10):331-9. PubMed ID: 19097490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced glycation end product (AGE): characterization of the products from the reaction between D-glucose and serum albumin.
    Wu JT; Tu MC; Zhung P
    J Clin Lab Anal; 1996; 10(1):21-34. PubMed ID: 8926563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.