BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22579724)

  • 1. Production of aromatics in Saccharomyces cerevisiae--a feasibility study.
    Krömer JO; Nunez-Bernal D; Averesch NJ; Hampe J; Varela J; Varela C
    J Biotechnol; 2013 Jan; 163(2):184-93. PubMed ID: 22579724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae.
    Averesch NJ; Winter G; Krömer JO
    Microb Cell Fact; 2016 May; 15():89. PubMed ID: 27230236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo instability of chorismate causes substrate loss during fermentative production of aromatics.
    Winter G; Averesch NJ; Nunez-Bernal D; Krömer JO
    Yeast; 2014 Sep; 31(9):333-41. PubMed ID: 24981409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae.
    Marbois B; Xie LX; Choi S; Hirano K; Hyman K; Clarke CF
    J Biol Chem; 2010 Sep; 285(36):27827-38. PubMed ID: 20592037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae.
    Brennan TC; Turner CD; Krömer JO; Nielsen LK
    Biotechnol Bioeng; 2012 Oct; 109(10):2513-22. PubMed ID: 22539043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis.
    Pierrel F; Hamelin O; Douki T; Kieffer-Jaquinod S; Mühlenhoff U; Ozeir M; Lill R; Fontecave M
    Chem Biol; 2010 May; 17(5):449-59. PubMed ID: 20534343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of P-aminobenzoic acid by metabolically engineered escherichia coli.
    Koma D; Yamanaka H; Moriyoshi K; Sakai K; Masuda T; Sato Y; Toida K; Ohmoto T
    Biosci Biotechnol Biochem; 2014; 78(2):350-7. PubMed ID: 25036692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain.
    Eshkol N; Sendovski M; Bahalul M; Katz-Ezov T; Kashi Y; Fishman A
    J Appl Microbiol; 2009 Feb; 106(2):534-42. PubMed ID: 19200319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae.
    Averesch NJH; Prima A; Krömer JO
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1283-1289. PubMed ID: 28528488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products.
    Int J Toxicol; 2008; 27 Suppl 4():1-82. PubMed ID: 19101832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Biosensor for Detection of Benzoic Acid Derivatives in
    Castaño-Cerezo S; Fournié M; Urban P; Faulon JL; Truan G
    Front Bioeng Biotechnol; 2019; 7():372. PubMed ID: 31970152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous ethanol production from cassava through simultaneous saccharification and fermentation by self-flocculating yeast Saccharomyces cerevisiae CHFY0321.
    Choi GW; Kang HW; Moon SK; Chung BW
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1517-27. PubMed ID: 19396636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae.
    Yu Z; Zhang H
    Bioresour Technol; 2004 Jun; 93(2):199-204. PubMed ID: 15051082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae].
    Shen Y; Wang Y; Bao XM; Qu YB
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production.
    Kazemi Seresht A; Cruz AL; de Hulster E; Hebly M; Palmqvist EA; van Gulik W; Daran JM; Pronk J; Olsson L
    Biotechnol Bioeng; 2013 Oct; 110(10):2749-63. PubMed ID: 23568816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges.
    Abbott DA; Zelle RM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 Dec; 9(8):1123-36. PubMed ID: 19566685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol--a review.
    Laluce C; Schenberg AC; Gallardo JC; Coradello LF; Pombeiro-Sponchiado SR
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1908-26. PubMed ID: 22391693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.