These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22579822)

  • 1. The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse.
    Fu Y; Sengul G; Paxinos G; Watson C
    Neurosci Lett; 2012 Jun; 518(2):161-6. PubMed ID: 22579822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord.
    Anelli R; Heckman CJ
    J Neurocytol; 2005 Dec; 34(6):369-85. PubMed ID: 16902759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord projections to the cerebellum in the mouse.
    Sengul G; Fu Y; Yu Y; Paxinos G
    Brain Struct Funct; 2015 Sep; 220(5):2997-3009. PubMed ID: 25009313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study.
    Antal M; Freund TF; Polgár E
    J Comp Neurol; 1990 May; 295(3):467-84. PubMed ID: 2351764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord.
    Ren K; Ruda MA
    Brain Res Brain Res Rev; 1994 May; 19(2):163-79. PubMed ID: 8061685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression.
    Fu Y; Tvrdik P; Makki N; Palombi O; Machold R; Paxinos G; Watson C
    Brain Res; 2009 May; 1271():49-59. PubMed ID: 19281800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice.
    Jinno S; Kosaka T
    J Comp Neurol; 2002 Jul; 449(1):1-25. PubMed ID: 12115690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of precerebellar neuron migration by RNA-binding protein Csde1.
    Kobayashi H; Kawauchi D; Hashimoto Y; Ogata T; Murakami F
    Neuroscience; 2013 Dec; 253():292-303. PubMed ID: 24012837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The red nucleus and the rubrospinal projection in the mouse.
    Liang H; Paxinos G; Watson C
    Brain Struct Funct; 2012 Apr; 217(2):221-32. PubMed ID: 21927901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis.
    Morona R; Moreno N; López JM; González A
    J Comp Neurol; 2006 Feb; 494(5):763-83. PubMed ID: 16374814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes in human cerebellum: expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein.
    Milosevic A; Zecevic N
    J Comp Neurol; 1998 Jul; 396(4):442-60. PubMed ID: 9651004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of calcium-binding proteins in cerebellar- and inferior olivary-projecting neurons in the nucleus lentiformis mesencephali of pigeons.
    Iwaniuk AN; Pakan JM; Gutiérrez-Ibáñez C; Wylie DR
    Vis Neurosci; 2009; 26(3):341-7. PubMed ID: 19435547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia.
    Zhang JH; Morita Y; Hironaka T; Emson PC; Tohyama M
    J Comp Neurol; 1990 Dec; 302(4):715-28. PubMed ID: 2081815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calbindin D-28k, parvalbumin and calcitonin gene-related peptide immunoreactivity in the canine spinal cord.
    Chang IY; Kim SW; Lee KJ; Yoon SP
    Anat Histol Embryol; 2008 Dec; 37(6):446-51. PubMed ID: 18637879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins.
    Dütsch M; Eichhorn U; Wörl J; Wank M; Berthoud HR; Neuhuber WL
    J Comp Neurol; 1998 Aug; 398(2):289-307. PubMed ID: 9700572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent connections of the cerebellum in various types of reptiles.
    Bangma GC; ten Donkelaar H
    J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive.
    Fu YH; Watson C
    Brain Behav Evol; 2012; 79(3):191-204. PubMed ID: 22301572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH-diaphorase and calcium binding proteins in the trigeminal nucleus oralis of rats.
    Munekawa N; Sugiyo S; Varathan V; Fukami H; Wakisaka S; Shigenaga Y; Takemura M
    Somatosens Mot Res; 2002; 19(3):173-80. PubMed ID: 12396573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.
    Sengul G; Puchalski RB; Watson C
    Anat Rec (Hoboken); 2012 May; 295(5):837-45. PubMed ID: 22454209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.