BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22580032)

  • 1. Structure, biosynthesis and possible function of tunichromes and related compounds.
    Sugumaran M; Robinson WE
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Sep; 163(1):1-25. PubMed ID: 22580032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative transformation of a tunichrome model compound provides new insight into the crosslinking and defense reaction of tunichromes.
    Abebe A; Kuang QF; Evans J; Robinson WE; Sugumaran M
    Bioorg Chem; 2017 Apr; 71():219-229. PubMed ID: 28228229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crosslinking and antimicrobial properties of tunichrome.
    Cai M; Sugumaran M; Robinson WE
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Sep; 151(1):110-7. PubMed ID: 18593604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plicatamide: A lead to the biosynthetic origins of the tunichromes?
    Tincu JA; Craig AG; Taylor SW
    Biochem Biophys Res Commun; 2000 Apr; 270(2):421-4. PubMed ID: 10753640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative transformation of tunichromes - Model studies with 1,2-dehydro-N-acetyldopamine and N-acetylcysteine.
    Kuang QF; Abebe A; Evans J; Sugumaran M
    Bioorg Chem; 2017 Aug; 73():53-62. PubMed ID: 28605673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of peptidyl 3,4-dihydroxyphenylalanine analogues: implications for the biosynthesis of tunichromes and related oligopeptides.
    Taylor SW; Molinski TF; Rzepecki LM; Waite JH
    J Nat Prod; 1991; 54(3):918-22. PubMed ID: 1955891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel 3,4-di- and 3,4,5-trihydroxyphenylalanine-containing polypeptides from the blood cells of the ascidians Ascidia ceratodes and Molgula manhattensis.
    Taylor SW; Ross MM; Waite JH
    Arch Biochem Biophys; 1995 Dec; 324(2):228-40. PubMed ID: 8554314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium in ascidians and the chemistry of tunichromes.
    Smith MJ; Ryan DE; Nakanishi K; Frank P; Hodgson KO
    Met Ions Biol Syst; 1995; 31():423-90. PubMed ID: 8564814
    [No Abstract]   [Full Text] [Related]  

  • 9. Morulin Pm: a modified polypeptide containing TOPA and 6-bromotryptophan from the morula cells of the ascidian, Phallusia mammillata.
    Taylor SW; Kammerer B; Nicholson GJ; Pusecker K; Walk T; Bayer E; Scippa S; de Vincentiis M
    Arch Biochem Biophys; 1997 Dec; 348(2):278-88. PubMed ID: 9434739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadium biochemistry: the unknown role of vanadium-containing cells in ascidians (sea squirts).
    Smith MJ
    Experientia; 1989 May; 45(5):452-7. PubMed ID: 2656286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions between vanadium ions and biogenic reductants of tunicates: spectroscopic probing for complexation and redox products in vitro.
    Ryan DE; Grant KB; Nakanishi K; Frank P; Hodgson KO
    Biochemistry; 1996 Jul; 35(26):8651-61. PubMed ID: 8679627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine metabolites: metal binding and metal complexes of azole-based cyclic peptides of marine origin.
    Bertram A; Pattenden G
    Nat Prod Rep; 2007 Feb; 24(1):18-30. PubMed ID: 17268606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of Vanabin2, a vanadium(IV)-binding protein from the vanadium-rich ascidian Ascidia sydneiensis samea.
    Hamada T; Asanuma M; Ueki T; Hayashi F; Kobayashi N; Yokoyama S; Michibata H; Hirota H
    J Am Chem Soc; 2005 Mar; 127(12):4216-22. PubMed ID: 15783203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions between tunichrome Mm-1, a tunicate blood pigment, and vanadium ions in acidic and neutral media.
    Ryan DE; Grant KB; Nakanishi K
    Biochemistry; 1996 Jul; 35(26):8640-50. PubMed ID: 8679626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial peptides - nature's own combinatorial biosynthesis.
    Welker M; von Döhren H
    FEMS Microbiol Rev; 2006 Jul; 30(4):530-63. PubMed ID: 16774586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats.
    Bryan PJ; McClintock JB; Slattery M; Rittschof DP
    Biofouling; 2003 Aug; 19(4):235-45. PubMed ID: 14626843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model sclerotization studies. 3. Cuticular enzyme catalyzed oxidation of peptidyl model tyrosine and dopa derivatives.
    Sugumaran M; Ricketts D
    Arch Insect Biochem Physiol; 1995; 28(1):17-32. PubMed ID: 7803812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenges of trafficking hydrolysis prone metals and ascidians as an archetype.
    Gaffney JP; Valentine AM
    Dalton Trans; 2011 Jun; 40(22):5827-35. PubMed ID: 21409233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and rewards of research in marine natural products chemistry in Brazil.
    Berlinck RG; Hajdu E; da Rocha RM; de Oliveira JH; Hernández IL; Seleghim MH; Granato AC; de Almeida EV; Nuñez CV; Muricy G; Peixinho S; Pessoa C; Moraes MO; Cavalcanti BC; Nascimento GG; Thiemann O; Silva M; Souza AO; Silva CL; Minarini PR
    J Nat Prod; 2004 Mar; 67(3):510-22. PubMed ID: 15043447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds.
    Crans DC; Smee JJ; Gaidamauskas E; Yang L
    Chem Rev; 2004 Feb; 104(2):849-902. PubMed ID: 14871144
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.