BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 22580222)

  • 1. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.
    Hwang HJ; Lim JH; Jung YJ; Choi H; Lee SW; Im CH
    J Neurosci Methods; 2012 Jun; 208(1):59-65. PubMed ID: 22580222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
    Volosyak I; Valbuena D; Lüth T; Malechka T; Gräser A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An SSVEP-based BCI using high duty-cycle visual flicker.
    Lee PL; Yeh CL; Cheng JY; Yang CY; Lan GY
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3350-9. PubMed ID: 21788179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC; Lee PL; Lo MT; Lee IH; Yeh TK; Chang CY
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A speedy hybrid BCI spelling approach combining P300 and SSVEP.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):473-83. PubMed ID: 24058009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method.
    Bin G; Gao X; Yan Z; Hong B; Gao S
    J Neural Eng; 2009 Aug; 6(4):046002. PubMed ID: 19494422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.
    Yin E; Zhou Z; Jiang J; Yu Y; Hu D
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1447-56. PubMed ID: 24801483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on transient VEP-based brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N; Itakura N
    Electromyogr Clin Neurophysiol; 2008; 48(1):43-51. PubMed ID: 18338534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transient VEP-based real-time brain-computer interface using non-direct gazed visual stimuli.
    Yoshimura N; Itakura N
    Electromyogr Clin Neurophysiol; 2009; 49(8):323-35. PubMed ID: 20058543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.
    Lee PL; Sie JJ; Liu YJ; Wu CH; Lee MH; Shu CH; Li PH; Sun CW; Shyu KK
    Ann Biomed Eng; 2010 Jul; 38(7):2383-97. PubMed ID: 20177780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.