BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 22580283)

  • 41. Par-4 is an essential downstream target of DAP-like kinase (Dlk) in Dlk/Par-4-mediated apoptosis.
    Boosen M; Vetterkind S; Kubicek J; Scheidtmann KH; Illenberger S; Preuss U
    Mol Biol Cell; 2009 Sep; 20(18):4010-20. PubMed ID: 19625447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Attenuation of EPO-dependent erythroblast formation by death-associated protein kinase-2.
    Fang J; Menon M; Zhang D; Torbett B; Oxburgh L; Tschan M; Houde E; Wojchowski DM
    Blood; 2008 Aug; 112(3):886-90. PubMed ID: 18535204
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DAPK2 regulates oxidative stress in cancer cells by preserving mitochondrial function.
    Schlegel CR; Georgiou ML; Misterek MB; Stöcker S; Chater ER; Munro CE; Pardo OE; Seckl MJ; Costa-Pereira AP
    Cell Death Dis; 2015 Mar; 6(3):e1671. PubMed ID: 25741596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Death-associated protein kinase 2: Regulator of apoptosis, autophagy and inflammation.
    Geering B
    Int J Biochem Cell Biol; 2015 Aug; 65():151-4. PubMed ID: 26055515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DAPk and pyruvate kinase: unlikely partners in cancer metabolic regulation.
    Mor I; Bialik S; Kimchi A
    Cell Cycle; 2012 Jan; 11(1):3-4. PubMed ID: 22157095
    [No Abstract]   [Full Text] [Related]  

  • 46. Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase.
    Brognard J; Zhang YW; Puto LA; Hunter T
    Cancer Res; 2011 Apr; 71(8):3152-61. PubMed ID: 21487036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immunokinases, a novel class of immunotherapeutics for targeted cancer therapy.
    Tur MK; Neef I; Jäger G; Teubner A; Stöcker M; Melmer G; Barth S
    Curr Pharm Des; 2009; 15(23):2693-9. PubMed ID: 19689339
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins.
    Obšilová V; Obšil T
    Physiol Res; 2024 Apr; ():. PubMed ID: 38647170
    [TBL] [Abstract][Full Text] [Related]  

  • 49. miR-520h is crucial for DAPK2 regulation and breast cancer progression.
    Su CM; Wang MY; Hong CC; Chen HA; Su YH; Wu CH; Huang MT; Chang YW; Jiang SS; Sung SY; Chang JY; Chen LT; Chen PS; Su JL
    Oncogene; 2017 Oct; 36(41):5770. PubMed ID: 28825723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites.
    Horvath M; Petrvalska O; Herman P; Obsilova V; Obsil T
    Commun Biol; 2021 Aug; 4(1):986. PubMed ID: 34413451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel Functions of Death-Associated Protein Kinases through Mitogen-Activated Protein Kinase-Related Signals.
    Elbadawy M; Usui T; Yamawaki H; Sasaki K
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30287790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-canonical activation of DAPK2 by AMPK constitutes a new pathway linking metabolic stress to autophagy.
    Shiloh R; Gilad Y; Ber Y; Eisenstein M; Aweida D; Bialik S; Cohen S; Kimchi A
    Nat Commun; 2018 May; 9(1):1759. PubMed ID: 29717115
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversibility of glioma stem cells' phenotypes explains their complex in vitro and in vivo behavior: Discovery of a novel neurosphere-specific enzyme, cGMP-dependent protein kinase 1, using the genomic landscape of human glioma stem cells as a discovery tool.
    Wilson TJ; Zamler DB; Doherty R; Castro MG; Lowenstein PR
    Oncotarget; 2016 Sep; 7(39):63020-63041. PubMed ID: 27564115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Death-Associated Protein Kinase Activity Is Regulated by Coupled Calcium/Calmodulin Binding to Two Distinct Sites.
    Simon B; Huart AS; Temmerman K; Vahokoski J; Mertens HD; Komadina D; Hoffmann JE; Yumerefendi H; Svergun DI; Kursula P; Schultz C; McCarthy AA; Hart DJ; Wilmanns M
    Structure; 2016 Jun; 24(6):851-61. PubMed ID: 27133022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation.
    Geering B; Zokouri Z; Hürlemann S; Gerrits B; Ausländer D; Britschgi A; Tschan MP; Simon HU; Fussenegger M
    Mol Cell Biol; 2016 Jan; 36(1):132-43. PubMed ID: 26483415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nodes-and-connections RNAi knockdown screening: identification of a signaling molecule network involved in fulvestrant action and breast cancer prognosis.
    Miyoshi N; Wittner BS; Shioda K; Hitora T; Ito T; Ramaswamy S; Isselbacher KJ; Sgroi DC; Shioda T
    Oncogenesis; 2015 Oct; 4(10):e172. PubMed ID: 26479444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function.
    Maimaitiyiming H; Li Y; Cui W; Tong X; Norman H; Qi X; Wang S
    Am J Physiol Renal Physiol; 2013 Sep; 305(6):F881-90. PubMed ID: 23825069
    [TBL] [Abstract][Full Text] [Related]  

  • 58. cGMP-dependent protein kinase I promotes cell apoptosis through hyperactivation of death-associated protein kinase 2.
    Isshiki K; Matsuda S; Tsuji A; Yuasa K
    Biochem Biophys Res Commun; 2012 Jun; 422(2):280-4. PubMed ID: 22580283
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.