These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22580390)

  • 21. Electrochemical behavior of quinapril and its determination in pharmaceutical formulations by square-wave voltammetry at a mercury electrode.
    Süslü I; Altinöz S
    Pharmazie; 2008 Jun; 63(6):428-33. PubMed ID: 18604985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrolyte tuning of electrode potentials: the one electron vs. two electron reduction of anthraquinone-2-sulfonate in aqueous media.
    Li Q; Batchelor-McAuley C; Lawrence NS; Hartshorne RS; Compton RG
    Chem Commun (Camb); 2011 Nov; 47(41):11426-8. PubMed ID: 21946916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. When electron transfer meets electron transport in redox-active molecular nanojunctions.
    Janin M; Ghilane J; Lacroix JC
    J Am Chem Soc; 2013 Feb; 135(6):2108-11. PubMed ID: 23331168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential linear scan voltammetry: analytical performance in comparison with pulsed voltammetry techniques.
    Sheth DB; Gratzl M
    Anal Bioanal Chem; 2013 Jun; 405(16):5539-47. PubMed ID: 23624955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interplay of electron hopping and bounded diffusion during charge transport in redox polymer electrodes.
    Akhoury A; Bromberg L; Hatton TA
    J Phys Chem B; 2013 Jan; 117(1):333-42. PubMed ID: 23137318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of slow substrate binding and release in redox enzymes: theory and application to periplasmic nitrate reductase.
    Bertrand P; Frangioni B; Dementin S; Sabaty M; Arnoux P; Guigliarelli B; Pignol D; Léger C
    J Phys Chem B; 2007 Aug; 111(34):10300-11. PubMed ID: 17676894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent modification of glassy carbon surfaces by using electrochemical and solid-phase synthetic methodologies: application to bi- and trifunctionalisation with different redox centres.
    Chrétien JM; Ghanem MA; Bartlett PN; Kilburn JD
    Chemistry; 2009 Nov; 15(44):11928-36. PubMed ID: 19784967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
    Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA
    Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Series behavior of lanthanoid(III) complexes with the alpha-1-Wells-Dawson heteropolyoxoanion in acetonitrile: electrochemistry and Ln coordination.
    Antonio MR; Jing J; Burton-Pye BP; Francesconi LC
    Dalton Trans; 2010 Sep; 39(34):7980-92. PubMed ID: 20672167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH-dependence of the aqueous electrochemistry of the two-electron reduced alpha-[Mo18O54(SO3)] sulfite Dawson-like polyoxometalate anion derived from its triethanolammonium salt.
    Baffert C; Feldberg SW; Bond AM; Long DL; Cronin L
    Dalton Trans; 2007 Oct; (40):4599-607. PubMed ID: 17928919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids.
    Aeschbacher M; Vergari D; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2011 Oct; 45(19):8385-94. PubMed ID: 21823669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of voltammetric techniques at microelectrodes to the study of the chemical stability of highly reactive species.
    Laborda E; Olmos JM; Torralba E; Molina A
    Anal Chem; 2015 Feb; 87(3):1676-84. PubMed ID: 25551335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the electrochemical behavior and differential pulse voltammetric determination of rhein using a nanoparticle composite film-modified electrode.
    Fei J; Peng Y; Tan H; Chen X; Yang J; Li J
    Bioelectrochemistry; 2007 May; 70(2):369-74. PubMed ID: 16820331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of N(5)-ethyl-flavinium cation formation upon electrochemical oxidation of N(5)-ethyl-4a-hydroxyflavin pseudobase.
    Sichula V; Hu Y; Mirzakulova E; Manzer SF; Vyas S; Hadad CM; Glusac KD
    J Phys Chem B; 2010 Jul; 114(29):9452-61. PubMed ID: 20597524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical oxidation of selenocystine and selenomethionine.
    Bai Y; Wang T; Liu Y; Zheng W
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):150-3. PubMed ID: 19665878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical and spectroscopic studies of the oxidation mechanism of the herbicide propanil.
    Garrido EM; Lima JL; Delerue-Matos C; Borges F; Silva AM; Piedade JA; Oliveira Brett AM
    J Agric Food Chem; 2003 Feb; 51(4):876-9. PubMed ID: 12568542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II).
    Zatloukalová M; Křen V; Gažák R; Kubala M; Trouillas P; Ulrichová J; Vacek J
    Bioelectrochemistry; 2011 Oct; 82(2):117-24. PubMed ID: 21764394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes.
    Kurnikov IV; Ratner MA; Pacheco AA
    Biochemistry; 2005 Feb; 44(6):1856-63. PubMed ID: 15697211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical investigation of immobilized hemoglobin: redox chemistry and enzymatic catalysis.
    Liu HH; Zou GL
    J Biochem Biophys Methods; 2006 Aug; 68(2):87-99. PubMed ID: 16762418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroelectrochemistry of the redox activation of anti-cancer drug mitoxantrone.
    Enache M; Bendic C; Volanschi E
    Bioelectrochemistry; 2008 Feb; 72(1):10-20. PubMed ID: 18068547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.