These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 22580483)
1. Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability. Wi HS; Kim SJ; Lee K; Kim SM; Yang HS; Pak HK Colloids Surf B Biointerfaces; 2012 Sep; 97():37-42. PubMed ID: 22580483 [TBL] [Abstract][Full Text] [Related]
2. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. Al-Jamal WT; Al-Jamal KT; Tian B; Lacerda L; Bomans PH; Frederik PM; Kostarelos K ACS Nano; 2008 Mar; 2(3):408-18. PubMed ID: 19206564 [TBL] [Abstract][Full Text] [Related]
3. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Luccardini C; Tribet C; Vial F; Marchi-Artzner V; Dahan M Langmuir; 2006 Feb; 22(5):2304-10. PubMed ID: 16489822 [TBL] [Abstract][Full Text] [Related]
4. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure. Wlodek M; Kolasinska-Sojka M; Szuwarzynski M; Kereïche S; Kovacik L; Zhou L; Islas L; Warszynski P; Briscoe WH Nanoscale; 2018 Sep; 10(37):17965-17974. PubMed ID: 30226255 [TBL] [Abstract][Full Text] [Related]
5. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions. Kolasinska-Sojka M; Wlodek M; Szuwarzynski M; Kereiche S; Kovacik L; Warszynski P Colloids Surf B Biointerfaces; 2017 Oct; 158():667-674. PubMed ID: 28763774 [TBL] [Abstract][Full Text] [Related]
6. AC-electric field dependent electroformation of giant lipid vesicles. Politano TJ; Froude VE; Jing B; Zhu Y Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284 [TBL] [Abstract][Full Text] [Related]
7. Interaction between water-soluble peptidic CdSe/ZnS nanocrystals and membranes: formation of hybrid vesicles and condensed lamellar phases. Dif A; Henry E; Artzner F; Baudy-Floc'h M; Schmutz M; Dahan M; Marchi-Artzner V J Am Chem Soc; 2008 Jul; 130(26):8289-96. PubMed ID: 18529051 [TBL] [Abstract][Full Text] [Related]
8. Interrogating the role of liposome size in mediating the dynamics of a chromophore in the acyl chain region of a phospholipid bilayer. Lapinski MM; Blanchard GJ Chem Phys Lipids; 2008 Jun; 153(2):130-7. PubMed ID: 18396153 [TBL] [Abstract][Full Text] [Related]
9. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207 [TBL] [Abstract][Full Text] [Related]
10. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots. Park YH; Lee DH; Um E; Park JK Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of lipid tubules with embedded quantum dots by membrane tubulation protein. Tanaka M; Critchley K; Matsunaga T; Evans SD; Staniland SS Small; 2012 May; 8(10):1590-5. PubMed ID: 22422568 [TBL] [Abstract][Full Text] [Related]
13. Effect of amphiphilic surfactant LDAO on the solubilization of DOPC vesicles and on the activity of Ca(2+)-ATPase reconstituted in DOPC vesicles. Karlovská J; Devínsky F; Balgavý P Gen Physiol Biophys; 2007 Dec; 26(4):290-7. PubMed ID: 18281747 [TBL] [Abstract][Full Text] [Related]
14. Imaging the lipid bilayer of giant unilamellar vesicles using red-to-blue light upconversion. Askes SH; López Mora N; Harkes R; Koning RI; Koster B; Schmidt T; Kros A; Bonnet S Chem Commun (Camb); 2015 Jun; 51(44):9137-40. PubMed ID: 25940614 [TBL] [Abstract][Full Text] [Related]
15. The effect of lipid phase on liposome stability upon exposure to the mechanical stress. Doskocz J; Dałek P; Foryś A; Trzebicka B; Przybyło M; Mesarec L; Iglič A; Langner M Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183361. PubMed ID: 32422137 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles. Liu W; He Z; Liang J; Zhu Y; Xu H; Yang X J Biomed Mater Res A; 2008 Mar; 84(4):1018-25. PubMed ID: 17668863 [TBL] [Abstract][Full Text] [Related]
17. Amphiphilic Polypeptoids Serve as the Connective Glue to Transform Liposomes into Multilamellar Structures with Closely Spaced Bilayers. Zhang Y; Xuan S; Owoseni O; Omarova M; Li X; Saito ME; He J; McPherson GL; Raghavan SR; Zhang D; John VT Langmuir; 2017 Mar; 33(11):2780-2789. PubMed ID: 28248521 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach. Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225 [TBL] [Abstract][Full Text] [Related]
19. Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes. Sigot V; Arndt-Jovin DJ; Jovin TM Bioconjug Chem; 2010 Aug; 21(8):1465-72. PubMed ID: 20715851 [TBL] [Abstract][Full Text] [Related]