These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22580955)

  • 1. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.
    Hyun TK; Rim Y; Jang HJ; Kim CH; Park J; Kumar R; Lee S; Kim BC; Bhak J; Nguyen-Quoc B; Kim SW; Lee SY; Kim JY
    Plant Mol Biol; 2012 Jul; 79(4-5):413-27. PubMed ID: 22580955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit.
    Müller-Maatsch J; Sprenger J; Hempel J; Kreiser F; Carle R; Schweiggert RM
    Food Res Int; 2017 Sep; 99(Pt 2):928-935. PubMed ID: 28847429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit.
    Kato M; Ikoma Y; Matsumoto H; Sugiura M; Hyodo H; Yano M
    Plant Physiol; 2004 Feb; 134(2):824-37. PubMed ID: 14739348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis.
    Wang G; Du X; Ji J; Guan C; Li Z; Josine TL
    Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits.
    Smita S; Rajwanshi R; Lenka SK; Katiyar A; Chinnusamy V; Bansal KC
    J Genet; 2013 Dec; 92(3):363-8. PubMed ID: 24371159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis.
    Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N
    BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis.
    Zhang L; Zhang Q; Li W; Zhang S; Xi W
    BMC Genomics; 2019 Nov; 20(1):876. PubMed ID: 31747897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit.
    Grassi S; Piro G; Lee JM; Zheng Y; Fei Z; Dalessandro G; Giovannoni JJ; Lenucci MS
    BMC Genomics; 2013 Nov; 14():781. PubMed ID: 24219562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing.
    Yang Y; Xu M; Luo Q; Wang J; Li H
    Gene; 2014 Jan; 534(2):155-62. PubMed ID: 24239772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit.
    Ishida BK; Turner C; Chapman MH; McKeon TA
    J Agric Food Chem; 2004 Jan; 52(2):274-9. PubMed ID: 14733508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative metabolites of lycopene and γ-carotene in gac (Momordica cochinchinensis).
    Maoka T; Yamano Y; Wada A; Etho T; Terada Y; Tokuda H; Nishino H
    J Agric Food Chem; 2015 Feb; 63(5):1622-30. PubMed ID: 25633727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation.
    Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L
    BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Identification of the B-Box Gene Family and Expression Analysis Suggests Their Potential Role in Photoperiod-Mediated β-Carotene Accumulation in the Endocarp of Cucumber (
    Obel HO; Cheng C; Li Y; Tian Z; Njogu MK; Li J; Lou Q; Yu X; Yang Z; Ogweno JO; Chen J
    Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing.
    Xiao Z; Su J; Sun X; Li C; He L; Cheng S; Liu X
    Genes Genomics; 2018 Jun; 40(6):591-601. PubMed ID: 29892944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc.): molecular analysis of carotenogenic gene expression and ethylene regulation.
    Kita M; Kato M; Ban Y; Honda C; Yaegaki H; Ikoma Y; Moriguchi T
    J Agric Food Chem; 2007 May; 55(9):3414-20. PubMed ID: 17397180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Carotenoid Biosynthesis During Fruit Development.
    Lado J; Zacarías L; Rodrigo MJ
    Subcell Biochem; 2016; 79():161-98. PubMed ID: 27485222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation.
    Rodrigo MJ; Marcos JF; Zacarías L
    J Agric Food Chem; 2004 Nov; 52(22):6724-31. PubMed ID: 15506808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and functional characterization of the maize carotenoid isomerase and β-carotene hydroxylase genes and their regulation during endosperm maturation.
    Li Q; Farre G; Naqvi S; Breitenbach J; Sanahuja G; Bai C; Sandmann G; Capell T; Christou P; Zhu C
    Transgenic Res; 2010 Dec; 19(6):1053-68. PubMed ID: 20221689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.