These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22581037)

  • 21. Curcumin and fisetin internalization into Saccharomyces cerevisiae cells via osmoporation: impact of multiple osmotic treatments on the process efficiency.
    Medeiros FGM; Correia RTP; Dupont S; Beney L; Pedrini MRS
    Lett Appl Microbiol; 2018 Oct; 67(4):363-369. PubMed ID: 29978596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content.
    de Câmara AA; Dupont S; Beney L; Gervais P; Rosenthal A; Correia RT; Pedrini MR
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5547-58. PubMed ID: 26980099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leveraging plant exine capsules as pH-responsive delivery vehicles for hydrophobic nutraceutical encapsulation.
    Wu D; Liang Y; Huang K; Jing X; Li B; Liang H
    Food Funct; 2018 Oct; 9(10):5436-5442. PubMed ID: 30280748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fundamental study of the microencapsulation procedure utilizing coacervation in a polystyrene-cyclohexane solution.
    Iso M; Kando T; Omi S
    J Microencapsul; 1985; 2(4):275-87. PubMed ID: 3880489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of encapsulation efficiency in polymeric microparticle system of tolmetin.
    Jelvehgari M; Valizadeh H; Rezapour M; Nokhodchi A
    Pharm Dev Technol; 2010; 15(1):71-9. PubMed ID: 19505209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the role of microenvironment for microencapsulated Sacchromyces cerevisiae under osmotic stress.
    Sun ZJ; Lv GJ; Li SY; Xie YB; Yu WT; Wang W; Ma XJ
    J Biotechnol; 2007 Jan; 128(1):150-61. PubMed ID: 17028034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules.
    Rajabinejad H; Patrucco A; Caringella R; Montarsolo A; Zoccola M; Pozzo PD
    Ultrason Sonochem; 2018 Jan; 40(Pt A):527-532. PubMed ID: 28946454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of process parameters for microencapsulation of plasmid DNA in poly(D,L-lactic-co-glycolic) acid microspheres.
    Hsu YY; Hao T; Hedley ML
    J Drug Target; 1999 Dec; 7(4):313-23. PubMed ID: 10682910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel system for water soluble protein encapsulation with high efficiency: "micelles enhanced" polyelectrolyte capsules.
    Li X; Li X; Zhang J; Zhao S; Shen J
    J Biomed Mater Res A; 2008 Jun; 85(3):768-76. PubMed ID: 17896774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast cell wall capsules for delivery of oat biomarker avenanthramide-C.
    He L; Zhu Y; Shen X; Chen G; Xiao H; Wang J; Tan C
    Food Chem; 2024 Aug; 448():139062. PubMed ID: 38531297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules.
    Haque T; Chen H; Ouyang W; Martoni C; Lawuyi B; Urbanska AM; Prakash S
    Mol Pharm; 2005; 2(1):29-36. PubMed ID: 15804175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsulation of orange terpenes investigating a plasticisation extrusion process.
    Tackenberg MW; Krauss R; Schuchmann HP; Kleinebudde P
    J Microencapsul; 2015; 32(4):408-17. PubMed ID: 26052721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microencapsulation as a tool for incorporating bioactive ingredients into food.
    Kuang SS; Oliveira JC; Crean AM
    Crit Rev Food Sci Nutr; 2010 Nov; 50(10):951-68. PubMed ID: 21108075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microencapsulation techniques, factors influencing encapsulation efficiency.
    Jyothi NV; Prasanna PM; Sakarkar SN; Prabha KS; Ramaiah PS; Srawan GY
    J Microencapsul; 2010 May; 27(3):187-97. PubMed ID: 20406093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery.
    Almería B; Fahmy TM; Gomez A
    J Control Release; 2011 Sep; 154(2):203-10. PubMed ID: 21640147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microencapsulation of indomethacin by gelatin-acacia complex coacervation in the presence of surfactants.
    Tirkkonen S; Turakka L; Paronen P
    J Microencapsul; 1994; 11(6):615-26. PubMed ID: 7884626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies.
    Solomon B; Sahle FF; Gebre-Mariam T; Asres K; Neubert RH
    Eur J Pharm Biopharm; 2012 Jan; 80(1):61-6. PubMed ID: 21924356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability.
    Baruch L; Machluf M
    Biopolymers; 2006 Aug; 82(6):570-9. PubMed ID: 16552738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of microencapsulation of Lactobacillus salivarus 29 into alginate/chitosan/alginate microcapsules on viability and cytokine induction.
    Bajracharya P; Islam MA; Jiang T; Kang SK; Choi YJ; Cho CS
    J Microencapsul; 2012; 29(5):429-36. PubMed ID: 22304243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formulation development and in vitro evaluation of theophylline microcapsules.
    Ahmad M; Akhtar N; Murtaza G; Hussain SW
    Pak J Pharm Sci; 2012 Jan; 25(1):15-9. PubMed ID: 22186304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.