These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 22581052)
1. High-throughput biophysical measurement of human red blood cells. Zheng Y; Shojaei-Baghini E; Azad A; Wang C; Sun Y Lab Chip; 2012 Jul; 12(14):2560-7. PubMed ID: 22581052 [TBL] [Abstract][Full Text] [Related]
2. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361 [TBL] [Abstract][Full Text] [Related]
3. Electrical measurement of red blood cell deformability on a microfluidic device. Zheng Y; Nguyen J; Wang C; Sun Y Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004 [TBL] [Abstract][Full Text] [Related]
4. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes. Kim KB; Chun H; Kim HC; Chung TD Electrophoresis; 2009 May; 30(9):1464-9. PubMed ID: 19340832 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in microfluidic techniques for single-cell biophysical characterization. Zheng Y; Nguyen J; Wei Y; Sun Y Lab Chip; 2013 Jul; 13(13):2464-83. PubMed ID: 23681312 [TBL] [Abstract][Full Text] [Related]
7. Red blood cell rheology using single controlled laser-induced cavitation bubbles. Quinto-Su PA; Kuss C; Preiser PR; Ohl CD Lab Chip; 2011 Feb; 11(4):672-8. PubMed ID: 21183972 [TBL] [Abstract][Full Text] [Related]
8. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Ameri SK; Singh PK; Dokmeci MR; Khademhosseini A; Xu Q; Sonkusale SR Biosens Bioelectron; 2014 Apr; 54():462-7. PubMed ID: 24315878 [TBL] [Abstract][Full Text] [Related]
9. Impedance spectroscopy using maximum length sequences: application to single cell analysis. Gawad S; Sun T; Green NG; Morgan H Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843 [TBL] [Abstract][Full Text] [Related]
10. Numerical and experimental study on the development of electric sensor as for measurement of red blood cell deformability in microchannels. Tatsumi K; Katsumoto Y; Fujiwara R; Nakabe K Sensors (Basel); 2012; 12(8):10566-83. PubMed ID: 23112616 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications. Kim YW; Yoo JY Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591 [TBL] [Abstract][Full Text] [Related]
12. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation. Lim HJ; Nam JH; Lee YJ; Shin S Rev Sci Instrum; 2009 Sep; 80(9):096101. PubMed ID: 19791972 [TBL] [Abstract][Full Text] [Related]
14. Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate. Guo J; Ai Y; Cheng Y; Li CM; Kang Y; Wang Z Electrophoresis; 2015 Aug; 36(16):1862-5. PubMed ID: 25349117 [TBL] [Abstract][Full Text] [Related]
15. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences. Sun T; Holmes D; Gawad S; Green NG; Morgan H Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346 [TBL] [Abstract][Full Text] [Related]
16. Characterization of red blood cell deformability change during blood storage. Zheng Y; Chen J; Cui T; Shehata N; Wang C; Sun Y Lab Chip; 2014 Feb; 14(3):577-83. PubMed ID: 24296983 [TBL] [Abstract][Full Text] [Related]
17. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739 [TBL] [Abstract][Full Text] [Related]
18. Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells. Ye T; Li H; Lam KY Langmuir; 2011 Mar; 27(6):3188-97. PubMed ID: 21332176 [TBL] [Abstract][Full Text] [Related]
19. Impedance-based viscoelastic flow cytometry. Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175 [TBL] [Abstract][Full Text] [Related]
20. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel. Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]