BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22581052)

  • 41. Artificial microvascular network: a new tool for measuring rheologic properties of stored red blood cells.
    Burns JM; Yang X; Forouzan O; Sosa JM; Shevkoplyas SS
    Transfusion; 2012 May; 52(5):1010-23. PubMed ID: 22043858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Separation of cancer cells from a red blood cell suspension using inertial force.
    Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Matsuki N; Yamaguchi T
    Lab Chip; 2012 Nov; 12(21):4336-43. PubMed ID: 22899210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On-chip determination of spermatozoa concentration using electrical impedance measurements.
    Segerink LI; Sprenkels AJ; ter Braak PM; Vermes I; van den Berg A
    Lab Chip; 2010 Apr; 10(8):1018-24. PubMed ID: 20358109
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bio-inspired cell concentration and deformability monitoring chips.
    Cho YH; Youn S; Lee DW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4214-9. PubMed ID: 18047154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A miniaturized wash-free microfluidic assay for electrical impedance-based assessment of red blood cell-mediated microvascular occlusion.
    Oshabaheebwa S; Delianides CA; Patwardhan AA; Evans EN; Sekyonda Z; Bode A; Apio FM; Mutuluuza CK; Sheehan VA; Suster MA; Gurkan UA; Mohseni P
    Biosens Bioelectron; 2024 Aug; 258():116352. PubMed ID: 38718635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrical cell counting process characterization in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes.
    Linderkamp O; Friederichs E; Meiselman HJ
    Pediatr Res; 1993 Nov; 34(5):688-93. PubMed ID: 8284111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    Ann Biomed Eng; 2009 Aug; 37(8):1546-59. PubMed ID: 19521772
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biophysical characterization of beta-thalassemic red blood cells.
    Desouky OS; Selim NS; El-Bakrawy EM; El-Marakby SM
    Cell Biochem Biophys; 2009; 55(1):45-53. PubMed ID: 19585085
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method.
    Bianco V; Merola F; Miccio L; Memmolo P; Gennari O; Paturzo M; Netti PA; Ferraro P
    Lab Chip; 2014 Jul; 14(14):2499-504. PubMed ID: 24852283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing.
    Srivastava SK; Artemiou A; Minerick AR
    Electrophoresis; 2011 Sep; 32(18):2530-40. PubMed ID: 21922495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations.
    Wang MH; Jang LS
    Biosens Bioelectron; 2009 May; 24(9):2830-5. PubMed ID: 19286365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of potassium in red blood cells using unmeasured volumes of whole blood and combined sodium/potassium-selective membrane electrode measurements.
    Pietrzak M; Meyerhoff ME
    Anal Chem; 2009 Jul; 81(14):5961-5. PubMed ID: 19601656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A discrete geometric approach to cell membrane and electrode contact impedance modeling.
    Affanni A; Specogna R; Trevisan F
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2619-27. PubMed ID: 22801483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device.
    Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G
    J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic inertia enhanced phase partitioning for enriching nucleated cell populations in blood.
    Parichehreh V; Medepallai K; Babbarwal K; Sethu P
    Lab Chip; 2013 Mar; 13(5):892-900. PubMed ID: 23307172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.