These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22581177)

  • 1. Exhaustive database searching for amino acid mutations in proteomes.
    Hyatt D; Pan C
    Bioinformatics; 2012 Jul; 28(14):1895-901. PubMed ID: 22581177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry.
    Pan C; Park BH; McDonald WH; Carey PA; Banfield JF; VerBerkmoes NC; Hettich RL; Samatova NF
    BMC Bioinformatics; 2010 Mar; 11():118. PubMed ID: 20205730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sipros/ProRata: a versatile informatics system for quantitative community proteomics.
    Wang Y; Ahn TH; Li Z; Pan C
    Bioinformatics; 2013 Aug; 29(16):2064-5. PubMed ID: 23793753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sipros Ensemble improves database searching and filtering for complex metaproteomics.
    Guo X; Li Z; Yao Q; Mueller RS; Eng JK; Tabb DL; Hervey WJ; Pan C
    Bioinformatics; 2018 Mar; 34(5):795-802. PubMed ID: 29028897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem Mass Spectrum Sequencing: An Alternative to Database Search Engines in Shotgun Proteomics.
    Muth T; Rapp E; Berven FS; Barsnes H; Vaudel M
    Adv Exp Med Biol; 2016; 919():217-226. PubMed ID: 27975219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of de Novo Sequencing to Large-Scale Complex Proteomics Data Sets.
    Devabhaktuni A; Elias JE
    J Proteome Res; 2016 Mar; 15(3):732-42. PubMed ID: 26743026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Database Search Engines: Paradigms, Challenges and Solutions.
    Verheggen K; Martens L; Berven FS; Barsnes H; Vaudel M
    Adv Exp Med Biol; 2016; 919():147-156. PubMed ID: 27975215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Database interrogation algorithms for identification of proteins in proteomic separations.
    Palagi PM; Lisacek F; Appel RD
    Methods Mol Biol; 2009; 519():515-31. PubMed ID: 19381607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Unexpected Protein Modifications by Mass Spectrometry-Based Proteomics.
    Ahmadi S; Winter D
    Methods Mol Biol; 2019; 1871():225-251. PubMed ID: 30276743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithms for the de novo sequencing of peptides from tandem mass spectra.
    Allmer J
    Expert Rev Proteomics; 2011 Oct; 8(5):645-57. PubMed ID: 21999834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics-grade de novo sequencing approach.
    Savitski MM; Nielsen ML; Kjeldsen F; Zubarev RA
    J Proteome Res; 2005; 4(6):2348-54. PubMed ID: 16335984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing Protein Sequence Database Suitability Using
    Johnson RS; Searle BC; Nunn BL; Gilmore JM; Phillips M; Amemiya CT; Heck M; MacCoss MJ
    Mol Cell Proteomics; 2020 Jan; 19(1):198-208. PubMed ID: 31732549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ScanRanker: Quality assessment of tandem mass spectra via sequence tagging.
    Ma ZQ; Chambers MC; Ham AJ; Cheek KL; Whitwell CW; Aerni HR; Schilling B; Miller AW; Caprioli RM; Tabb DL
    J Proteome Res; 2011 Jul; 10(7):2896-904. PubMed ID: 21520941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automated de novo sequencing.
    Waridel P; Frank A; Thomas H; Surendranath V; Sunyaev S; Pevzner P; Shevchenko A
    Proteomics; 2007 Jul; 7(14):2318-29. PubMed ID: 17623296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shotgun protein identification and quantification by mass spectrometry in neuroproteomics.
    Lu B; Xu T; Park SK; McClatchy DB; Liao L; Yates JR
    Methods Mol Biol; 2009; 566():229-59. PubMed ID: 20058176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigating through metaproteomics data: a logbook of database searching.
    Muth T; Kolmeder CA; Salojärvi J; Keskitalo S; Varjosalo M; Verdam FJ; Rensen SS; Reichl U; de Vos WM; Rapp E; Martens L
    Proteomics; 2015 Oct; 15(20):3439-53. PubMed ID: 25778831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General framework for developing and evaluating database scoring algorithms using the TANDEM search engine.
    MacLean B; Eng JK; Beavis RC; McIntosh M
    Bioinformatics; 2006 Nov; 22(22):2830-2. PubMed ID: 16877754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.