These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Strong induced-fit binding of viologen and pyridine derivatives in adjustable porphyrin cavities. Deutman AB; Smits JM; de Gelder R; Elemans JA; Nolte RJ; Rowan AE Chemistry; 2014 Sep; 20(36):11574-83. PubMed ID: 25056741 [TBL] [Abstract][Full Text] [Related]
9. Modulation of the singlet-singlet through-space energy transfer rates in cofacial bisporphyrin and porphyrin-corrole dyads. Gros CP; Brisach F; Meristoudi A; Espinosa E; Guilard R; Harvey PD Inorg Chem; 2007 Jan; 46(1):125-35. PubMed ID: 17198420 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly and host-guest chemistry of a 3.5-nm coordination nanotube. Yamaguchi T; Tashiro S; Tominaga M; Kawano M; Ozeki T; Fujita M Chem Asian J; 2007 Apr; 2(4):468-76. PubMed ID: 17441183 [TBL] [Abstract][Full Text] [Related]
11. Coordination-induced spin crossover (CISCO) through axial bonding of substituted pyridines to nickel-porphyrins: sigma-donor versus pi-acceptor effects. Thies S; Bornholdt C; Köhler F; Sönnichsen FD; Näther C; Tuczek F; Herges R Chemistry; 2010 Sep; 16(33):10074-83. PubMed ID: 20648489 [TBL] [Abstract][Full Text] [Related]
12. Cobalt(IV) corroles as catalysts for the electroreduction of O2: reactions of heterobimetallic dyads containing a face-to-face linked Fe(III) or Mn(III) porphyrin. Kadish KM; Frémond L; Burdet F; Barbe JM; Gros CP; Guilard R J Inorg Biochem; 2006 Apr; 100(4):858-68. PubMed ID: 16516296 [TBL] [Abstract][Full Text] [Related]
13. A new strategy for the design of water-soluble synthetic receptors: specific recognition of DNA intercalators and diamines. Wada K; Mizutani T; Matsuoka H; Kitagawa S Chemistry; 2003 May; 9(10):2368-80. PubMed ID: 12772312 [TBL] [Abstract][Full Text] [Related]
14. Template-assisted ligand encapsulation; the impact of an unusual coordination geometry on a supramolecular pyridylphosphine-Zn(II)porphyrin assembly. Kleij AW; Kuil M; Tooke DM; Spek AL; Reek JN Inorg Chem; 2005 Oct; 44(22):7696-8. PubMed ID: 16241114 [TBL] [Abstract][Full Text] [Related]
15. A versatile bis-porphyrin tweezer host for the assembly of noncovalent photoactive architectures: a photophysical characterization of the tweezers and their association with porphyrins and other guests. Flamigni L; Talarico AM; Ventura B; Rein R; Solladié N Chemistry; 2006 Jan; 12(3):701-12. PubMed ID: 16224770 [TBL] [Abstract][Full Text] [Related]
16. A bioinspired self assembled dimeric porphyrin pocket that binds electron accepting ligands. Börjesson K; Woller JG; Parsa E; Mårtensson J; Albinsson B Chem Commun (Camb); 2012 Feb; 48(12):1793-5. PubMed ID: 22215229 [TBL] [Abstract][Full Text] [Related]
17. Molecular tools for the self-assembly of bisporphyrin photodyads: a comprehensive physicochemical and photophysical study. Brandel J; Trabolsi A; Traboulsi H; Melin F; Koepf M; Wytko JA; Elhabiri M; Weiss J; Albrecht-Gary AM Inorg Chem; 2009 Apr; 48(8):3743-54. PubMed ID: 19296613 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic and computational study of β-ethynylphenylene substituted zinc and free-base porphyrins. Earles JC; Gordon KC; Stephenson AW; Partridge AC; Officer DL Phys Chem Chem Phys; 2011 Jan; 13(4):1597-605. PubMed ID: 21125110 [TBL] [Abstract][Full Text] [Related]