These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22581305)

  • 21. The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem.
    Piastra MC; Nüßing A; Vorwerk J; Bornfleth H; Oostenveld R; Engwer C; Wolters CH
    Front Neurosci; 2018; 12():30. PubMed ID: 29456487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Array response kernels for EEG and MEG in multilayer ellipsoidal geometry.
    Gutiérrez D; Nehorai A
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1103-11. PubMed ID: 18334402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Error analysis of a Galerkin method to solve the forward problem in MEG using the boundary element method.
    Tissari S; Rahola J
    Comput Methods Programs Biomed; 2003 Nov; 72(3):209-22. PubMed ID: 14554135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping human brain function with MEG and EEG: methods and validation.
    Darvas F; Pantazis D; Kucukaltun-Yildirim E; Leahy RM
    Neuroimage; 2004; 23 Suppl 1():S289-99. PubMed ID: 15501098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Models and computation methods of EEG forward problem].
    Zhang Y; Zou L; Zhu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):337-9. PubMed ID: 15143572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging.
    Akalin-Acar Z; Gençer NG
    Phys Med Biol; 2004 Nov; 49(21):5011-28. PubMed ID: 15584534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A meshless method for solving the EEG forward problem.
    von Ellenrieder N; Muravchik CH; Nehorai A
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):249-57. PubMed ID: 15709662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MEG forward problem formulation using equivalent surface current densities.
    von Ellenrieder N; Muravchik CH; Nehorai A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1210-7. PubMed ID: 16041984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison between realistic and spherical approaches in EEG forward modelling.
    Meneghini F; Vatta F; Esposito F; Mininel S; Di Salle F
    Biomed Tech (Berl); 2010 Jun; 55(3):133-46. PubMed ID: 20178450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bayesian model selection of template forward models for EEG source reconstruction.
    Strobbe G; van Mierlo P; De Vos M; Mijović B; Hallez H; Van Huffel S; López JD; Vandenberghe S
    Neuroimage; 2014 Jun; 93 Pt 1():11-22. PubMed ID: 24582919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony.
    David O; Garnero L; Cosmelli D; Varela FJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):975-87. PubMed ID: 12214887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fast method to derive realistic BEM models for E/MEG source reconstruction.
    van't Ent D; de Munck JC; Kaas AL
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1434-43. PubMed ID: 11759924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of three-shell and simplified volume conductor models in magnetoencephalography.
    Stenroos M; Hunold A; Haueisen J
    Neuroimage; 2014 Jul; 94():337-348. PubMed ID: 24434678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence.
    Winter WR; Nunez PL; Ding J; Srinivasan R
    Stat Med; 2007 Sep; 26(21):3946-57. PubMed ID: 17607723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of skull resistivity on the spatial resolutions of EEG and MEG.
    Malmivuo JA; Suihko VE
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1276-80. PubMed ID: 15248545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The adjoint method for general EEG and MEG sensor-based lead field equations.
    Vallaghé S; Papadopoulo T; Clerc M
    Phys Med Biol; 2009 Jan; 54(1):135-47. PubMed ID: 19075359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Application of boundary element method for more accurate localization of EEG dipole sources].
    Tkachenko ON; Frolov AA; Verkhliutov VM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(2):247-54. PubMed ID: 18661787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dipole models for the EEG and MEG.
    Schimpf PH; Ramon C; Haueisen J
    IEEE Trans Biomed Eng; 2002 May; 49(5):409-18. PubMed ID: 12002172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integral equations and boundary-element solution for static potential in a general piece-wise homogeneous volume conductor.
    Stenroos M
    Phys Med Biol; 2016 Nov; 61(22):N606-N617. PubMed ID: 27779140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytic expansion of the EEG lead field for realistic volume conductors.
    Nolte G; Dassios G
    Phys Med Biol; 2005 Aug; 50(16):3807-23. PubMed ID: 16077228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.