BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 22581364)

  • 1. NOX enzymes: potential target for the treatment of acute lung injury.
    Carnesecchi S; Pache JC; Barazzone-Argiroffo C
    Cell Mol Life Sci; 2012 Jul; 69(14):2373-85. PubMed ID: 22581364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The role of nicotinamide-adenine dinucleotide phosphate oxidase NOX family in acute lung injury].
    Li D; Cong Z; Lyu X; Wu C; Tao Y; Zhu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 Feb; 31(2):244-247. PubMed ID: 30827320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice.
    Kim MJ; Ryu JC; Kwon Y; Lee S; Bae YS; Yoon JH; Ryu JH
    Antioxid Redox Signal; 2014 Nov; 21(13):1803-18. PubMed ID: 24766345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury.
    Kim SK; Rho SJ; Kim SH; Kim SY; Song SH; Yoo JY; Kim CH; Lee SH
    Clin Exp Pharmacol Physiol; 2019 Feb; 46(2):153-162. PubMed ID: 30403294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paracrine factors from mesenchymal stem cells: a proposed therapeutic tool for acute lung injury and acute respiratory distress syndrome.
    Li J; Huang S; Wu Y; Gu C; Gao D; Feng C; Wu X; Fu X
    Int Wound J; 2014 Apr; 11(2):114-21. PubMed ID: 24373614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does activation of the FcgammaRIIa play a role in the pathogenesis of the acute lung injury/acute respiratory distress syndrome?
    Fudala R; Krupa A; Stankowska D; Allen TC; Kurdowska AK
    Clin Sci (Lond); 2010 Jan; 118(8):519-26. PubMed ID: 20088831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome.
    Jia Q; Yang Y; Chen X; Yao S; Hu Z
    Respir Res; 2022 Dec; 23(1):366. PubMed ID: 36539808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting NOX enzymes in pulmonary fibrosis.
    Hecker L; Cheng J; Thannickal VJ
    Cell Mol Life Sci; 2012 Jul; 69(14):2365-71. PubMed ID: 22618245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular vesicles in acute respiratory distress syndrome: Recent developments from bench to bedside.
    Quan C; Wang M; Chen H; Zhang H
    Int Immunopharmacol; 2021 Nov; 100():108118. PubMed ID: 34492532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute lung injury leads to depression-like symptoms through upregulation of neutrophilic and neuronal NADPH oxidase signaling in a murine model.
    Nadeem A; Siddiqui N; Al-Harbi NO; Attia SM; AlSharari SD; Ahmad SF
    Int Immunopharmacol; 2017 Jun; 47():218-226. PubMed ID: 28433943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice.
    Wakayama H; Hashimoto N; Matsushita Y; Matsubara K; Yamamoto N; Hasegawa Y; Ueda M; Yamamoto A
    Cytotherapy; 2015 Aug; 17(8):1119-29. PubMed ID: 26031744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The HDL from septic-ARDS patients with composition changes exacerbates pulmonary endothelial dysfunction and acute lung injury induced by cecal ligation and puncture (CLP) in mice.
    Yang L; Liu S; Han S; Hu Y; Wu Z; Shi X; Pang B; Ma Y; Jin J
    Respir Res; 2020 Nov; 21(1):293. PubMed ID: 33148285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research progress of extracellular vesicle microRNA in acute lung injury].
    Ren Y; Chen M; Liu X; Feng B
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 May; 33(5):633-637. PubMed ID: 34112309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 16. Contribution of neutrophils to acute lung injury.
    Grommes J; Soehnlein O
    Mol Med; 2011; 17(3-4):293-307. PubMed ID: 21046059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications.
    Qiao X; Yin J; Zheng Z; Li L; Feng X
    Cell Commun Signal; 2024 Apr; 22(1):241. PubMed ID: 38664775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS).
    Kellner M; Noonepalle S; Lu Q; Srivastava A; Zemskov E; Black SM
    Adv Exp Med Biol; 2017; 967():105-137. PubMed ID: 29047084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular vesicles in the pathogenesis and treatment of acute lung injury.
    Hu Q; Zhang S; Yang Y; Yao JQ; Tang WF; Lyon CJ; Hu TY; Wan MH
    Mil Med Res; 2022 Nov; 9(1):61. PubMed ID: 36316787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the use of exosomes for the treatment of ALI/ARDS.
    Liu C; Xiao K; Xie L
    Front Immunol; 2022; 13():971189. PubMed ID: 36016948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.