These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22581429)

  • 21. Acetate enhances startup of a H₂-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells.
    Huang L; Wang Q; Quan X; Liu Y; Chen G
    Bioelectrochemistry; 2013 Dec; 94():13-22. PubMed ID: 23747520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs).
    Cheng S; Logan BE
    Water Sci Technol; 2008; 58(4):853-7. PubMed ID: 18776621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization.
    Xia X; Sun Y; Liang P; Huang X
    Bioresour Technol; 2012 Sep; 120():26-33. PubMed ID: 22784950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design.
    Ahn Y; Logan BE
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2241-8. PubMed ID: 22314518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells.
    Croese E; Jeremiasse AW; Marshall IP; Spormann AM; Euverink GJ; Geelhoed JS; Stams AJ; Plugge CM
    Enzyme Microb Technol; 2014; 61-62():67-75. PubMed ID: 24910339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene.
    Aulenta F; Reale P; Canosa A; Rossetti S; Panero S; Majone M
    Biosens Bioelectron; 2010 Mar; 25(7):1796-802. PubMed ID: 20083400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents.
    Villano M; De Bonis L; Rossetti S; Aulenta F; Majone M
    Bioresour Technol; 2011 Feb; 102(3):3193-9. PubMed ID: 21129958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioelectrochemical perchlorate reduction in a microbial fuel cell.
    Butler CS; Clauwaert P; Green SJ; Verstraete W; Nerenberg R
    Environ Sci Technol; 2010 Jun; 44(12):4685-91. PubMed ID: 20476736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.
    Behera M; Jana PS; Ghangrekar MM
    Bioresour Technol; 2010 Feb; 101(4):1183-9. PubMed ID: 19800223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B; Hu Y; Sun J
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.
    Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y
    Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides-enriched microbial culture.
    Leitão P; Rossetti S; Nouws HP; Danko AS; Majone M; Aulenta F
    Bioresour Technol; 2015 Nov; 195():78-82. PubMed ID: 26099437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic Reconstruction and Modeling Microbial Electrosynthesis.
    Marshall CW; Ross DE; Handley KM; Weisenhorn PB; Edirisinghe JN; Henry CS; Gilbert JA; May HD; Norman RS
    Sci Rep; 2017 Aug; 7(1):8391. PubMed ID: 28827682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells.
    Jiang D; Li B; Jia W; Lei Y
    Appl Biochem Biotechnol; 2010 Jan; 160(1):182-96. PubMed ID: 19214793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycerol degradation in single-chamber microbial fuel cells.
    Nimje VR; Chen CY; Chen CC; Chen HR; Tseng MJ; Jean JS; Chang YF
    Bioresour Technol; 2011 Feb; 102(3):2629-34. PubMed ID: 21051224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.