These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 22581649)

  • 41. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling.
    Zhang JZ; Lu TW; Stolerman LM; Tenner B; Yang JR; Zhang JF; Falcke M; Rangamani P; Taylor SS; Mehta S; Zhang J
    Cell; 2020 Sep; 182(6):1531-1544.e15. PubMed ID: 32846158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata.
    Demuyser L; Van Genechten W; Mizuno H; Colombo S; Van Dijck P
    Cell Microbiol; 2018 Oct; 20(10):e12863. PubMed ID: 29845711
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A boost in learning by removing nuclear phosphodiesterases and enhancing nuclear cAMP signaling.
    Gurevich VV; Gurevich EV
    Sci Signal; 2023 Mar; 16(778):eadg9504. PubMed ID: 36976864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s).
    Xie M; Blackman B; Scheitrum C; Mika D; Blanchard E; Lei T; Conti M; Richter W
    Biochem J; 2014 May; 459(3):539-50. PubMed ID: 24555506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations.
    Oliveira RF; Terrin A; Di Benedetto G; Cannon RC; Koh W; Kim M; Zaccolo M; Blackwell KT
    PLoS One; 2010 Jul; 5(7):e11725. PubMed ID: 20661441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases.
    Conti M; Mika D; Richter W
    J Gen Physiol; 2014 Jan; 143(1):29-38. PubMed ID: 24378905
    [No Abstract]   [Full Text] [Related]  

  • 47. Transgenic fruit-flies expressing a FRET-based sensor for in vivo imaging of cAMP dynamics.
    Lissandron V; Rossetto MG; Erbguth K; Fiala A; Daga A; Zaccolo M
    Cell Signal; 2007 Nov; 19(11):2296-303. PubMed ID: 17689927
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measuring Spatiotemporal cAMP Dynamics Within an Endogenous Signaling Compartment Using FluoSTEP-ICUE.
    Hardy JC; Mehta S; Zhang J
    Methods Mol Biol; 2022; 2483():351-366. PubMed ID: 35286687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Uncovering the function of Disrupted in Schizophrenia 1 through interactions with the cAMP phosphodiesterase PDE4: Contributions of the Houslay lab to molecular psychiatry.
    Brandon NJ
    Cell Signal; 2016 Jul; 28(7):749-52. PubMed ID: 26432168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo.
    Massengill CI; Bayless-Edwards L; Ceballos CC; Cebul ER; Cahill J; Bharadwaj A; Wilson E; Qin M; Whorton MR; Baconguis I; Ye B; Mao T; Zhong H
    Nat Methods; 2022 Nov; 19(11):1461-1471. PubMed ID: 36303019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How pancreatic beta-cells discriminate long and short timescale cAMP signals.
    Peercy BE; Sherman AS
    Biophys J; 2010 Jul; 99(2):398-406. PubMed ID: 20643057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Editorial.
    Baillie GS
    Cell Signal; 2016 Jul; 28(7):699-700. PubMed ID: 26850139
    [No Abstract]   [Full Text] [Related]  

  • 53. An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice.
    Zhang JF; Liu B; Hong I; Mo A; Roth RH; Tenner B; Lin W; Zhang JZ; Molina RS; Drobizhev M; Hughes TE; Tian L; Huganir RL; Mehta S; Zhang J
    Nat Chem Biol; 2021 Jan; 17(1):39-46. PubMed ID: 32989297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compartmentalization of second messengers in neurons: a mathematical analysis.
    Chen W; Levine H; Rappel WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041901. PubMed ID: 19905336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Location, location, location: PDE4D5 function is directed by its unique N-terminal region.
    Wills L; Ehsan M; Whiteley EL; Baillie GS
    Cell Signal; 2016 Jul; 28(7):701-5. PubMed ID: 26808969
    [No Abstract]   [Full Text] [Related]  

  • 56. Deep quench: an expanded dynamic range for protein kinase sensors.
    Sharma V; Agnes RS; Lawrence DS
    J Am Chem Soc; 2007 Mar; 129(10):2742-3. PubMed ID: 17305340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MRI biosensor for protein kinase A encoded by a single synthetic gene.
    Airan RD; Bar-Shir A; Liu G; Pelled G; McMahon MT; van Zijl PC; Bulte JW; Gilad AA
    Magn Reson Med; 2012 Dec; 68(6):1919-23. PubMed ID: 23023588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatiotemporal mapping of PKA activity using biosensors.
    Pouvreau S
    Cell Cycle; 2015; 14(4):471. PubMed ID: 25692715
    [No Abstract]   [Full Text] [Related]  

  • 59. Mechanisms of cyclic AMP compartmentation revealed by computational models.
    Saucerman JJ; Greenwald EC; Polanowska-Grabowska R
    J Gen Physiol; 2014 Jan; 143(1):39-48. PubMed ID: 24378906
    [No Abstract]   [Full Text] [Related]  

  • 60. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction.
    Teruel MN; Meyer T
    Cell; 2000 Oct; 103(2):181-4. PubMed ID: 11057890
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.