BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22581727)

  • 1. Phospholipid nanodisc engineering for drug delivery systems.
    Murakami T
    Biotechnol J; 2012 Jun; 7(6):762-7. PubMed ID: 22581727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors.
    McNeeley KM; Karathanasis E; Annapragada AV; Bellamkonda RV
    Biomaterials; 2009 Aug; 30(23-24):3986-95. PubMed ID: 19427688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier.
    Liu L; Guo K; Lu J; Venkatraman SS; Luo D; Ng KC; Ling EA; Moochhala S; Yang YY
    Biomaterials; 2008 Apr; 29(10):1509-17. PubMed ID: 18155137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery.
    Damiano MG; Mutharasan RK; Tripathy S; McMahon KM; Thaxton CS
    Adv Drug Deliv Rev; 2013 May; 65(5):649-62. PubMed ID: 22921597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles.
    Musacchio T; Vaze O; D'Souza G; Torchilin VP
    Bioconjug Chem; 2010 Aug; 21(8):1530-6. PubMed ID: 20669936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-density lipoprotein-mediated drug delivery system.
    Mo ZC; Ren K; Liu X; Tang ZL; Yi GH
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt A):132-147. PubMed ID: 27208399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells.
    Messerschmidt SK; Musyanovych A; Altvater M; Scheurich P; Pfizenmaier K; Landfester K; Kontermann RE
    J Control Release; 2009 Jul; 137(1):69-77. PubMed ID: 19306900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular drug delivery by genetically engineered high-density lipoprotein nanoparticles.
    Murakami T; Wijagkanalan W; Hashida M; Tsuchida K
    Nanomedicine (Lond); 2010 Aug; 5(6):867-79. PubMed ID: 20735223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural low- and high-density lipoproteins as mighty bio-nanocarriers for anticancer drug delivery.
    Mahmoudian M; Salatin S; Khosroushahi AY
    Cancer Chemother Pharmacol; 2018 Sep; 82(3):371-382. PubMed ID: 29915981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases.
    Wang G; Mostafa NZ; Incani V; Kucharski C; Uludağ H
    J Biomed Mater Res A; 2012 Mar; 100(3):684-93. PubMed ID: 22213565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) nanoparticles as potential drug carriers.
    Chen C; Cheng YC; Yu CH; Chan SW; Cheung MK; Yu PH
    J Biomed Mater Res A; 2008 Nov; 87(2):290-8. PubMed ID: 18181106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers.
    Duan Y; Xu J; Lin Y; Yu H; Gong T; Li Y; Zhang Z
    J Biomed Mater Res A; 2008 Nov; 87(2):515-23. PubMed ID: 18186066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy.
    Wang C; Cheng L; Liu Z
    Biomaterials; 2011 Feb; 32(4):1110-20. PubMed ID: 20965564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEGylated nanocarriers for systemic delivery.
    Jain NK; Nahar M
    Methods Mol Biol; 2010; 624():221-34. PubMed ID: 20217599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of amino acids Glu146-->Arg160 in human apolipoprotein A-I (ApoA-ISeattle) alters lecithin:cholesterol acyltransferase activity and recruitment of cell phospholipid.
    Lindholm EM; Bielicki JK; Curtiss LK; Rubin EM; Forte TM
    Biochemistry; 1998 Apr; 37(14):4863-8. PubMed ID: 9538003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and optimization of PMAA-chitosan-PEG nanoparticles for oral drug delivery.
    Pawar H; Douroumis D; Boateng JS
    Colloids Surf B Biointerfaces; 2012 Feb; 90():102-8. PubMed ID: 22037474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles.
    Wang H; Zhao Y; Wu Y; Hu YL; Nan K; Nie G; Chen H
    Biomaterials; 2011 Nov; 32(32):8281-90. PubMed ID: 21807411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles.
    Kuai R; Li D; Chen YE; Moon JJ; Schwendeman A
    ACS Nano; 2016 Mar; 10(3):3015-41. PubMed ID: 26889958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.