BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22581728)

  • 1. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation.
    Quinlan AM; Billiar KL
    J Biomed Mater Res A; 2012 Sep; 100(9):2474-82. PubMed ID: 22581728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization.
    Ma H; Killaars AR; DelRio FW; Yang C; Anseth KS
    Biomaterials; 2017 Jul; 131():131-144. PubMed ID: 28390245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between valvular interstitial cell morphology and phenotypes: A novel way to detect activation.
    Ali MS; Deb N; Wang X; Rahman M; Christopher GF; Lacerda CMR
    Tissue Cell; 2018 Oct; 54():38-46. PubMed ID: 30309508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves.
    Pho M; Lee W; Watt DR; Laschinger C; Simmons CA; McCulloch CA
    Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1767-78. PubMed ID: 18263709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.
    Sakamoto Y; Buchanan RM; Sacks MS
    J Mech Behav Biomed Mater; 2016 Feb; 54():244-58. PubMed ID: 26476967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment.
    Mabry KM; Lawrence RL; Anseth KS
    Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease.
    Walker GA; Masters KS; Shah DN; Anseth KS; Leinwand LA
    Circ Res; 2004 Aug; 95(3):253-60. PubMed ID: 15217906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform.
    Hjortnaes J; Camci-Unal G; Hutcheson JD; Jung SM; Schoen FJ; Kluin J; Aikawa E; Khademhosseini A
    Adv Healthc Mater; 2015 Jan; 4(1):121-30. PubMed ID: 24958085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype.
    Mabry KM; Payne SZ; Anseth KS
    Biomaterials; 2016 Jan; 74():31-41. PubMed ID: 26433490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus.
    Wang H; Haeger SM; Kloxin AM; Leinwand LA; Anseth KS
    PLoS One; 2012; 7(7):e39969. PubMed ID: 22808079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of valvular interstitial cells is mediated by transforming growth factor-beta1 interactions with matrix molecules.
    Cushing MC; Liao JT; Anseth KS
    Matrix Biol; 2005 Sep; 24(6):428-37. PubMed ID: 16055320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix.
    Yip CY; Chen JH; Zhao R; Simmons CA
    Arterioscler Thromb Vasc Biol; 2009 Jun; 29(6):936-42. PubMed ID: 19304575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanoregulation of valvular interstitial cell phenotype in the third dimension.
    Kural MH; Billiar KL
    Biomaterials; 2014 Jan; 35(4):1128-37. PubMed ID: 24210873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genes That Escape X Chromosome Inactivation Modulate Sex Differences in Valve Myofibroblasts.
    Aguado BA; Walker CJ; Grim JC; Schroeder ME; Batan D; Vogt BJ; Rodriguez AG; Schwisow JA; Moulton KS; Weiss RM; Heistad DD; Leinwand LA; Anseth KS
    Circulation; 2022 Feb; 145(7):513-530. PubMed ID: 35000411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cell-matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels.
    Gould ST; Anseth KS
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E443-E453. PubMed ID: 24130082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels.
    Khang A; Gonzalez Rodriguez A; Schroeder ME; Sansom J; Lejeune E; Anseth KS; Sacks MS
    Acta Biomater; 2019 Sep; 96():354-367. PubMed ID: 31323351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels.
    Benton JA; Fairbanks BD; Anseth KS
    Biomaterials; 2009 Dec; 30(34):6593-603. PubMed ID: 19747725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The elastic properties of valve interstitial cells undergoing pathological differentiation.
    Wyss K; Yip CY; Mirzaei Z; Jin X; Chen JH; Simmons CA
    J Biomech; 2012 Mar; 45(5):882-7. PubMed ID: 22189247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region.
    Stephens EH; Durst CA; West JL; Grande-Allen KJ
    Acta Biomater; 2011 Jan; 7(1):75-82. PubMed ID: 20624493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.