These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 22581927)
21. Angiotensin II-induced histone deacetylase 5 phosphorylation, nuclear export, and Egr-1 expression are mediated by Akt pathway in A10 vascular smooth muscle cells. Truong V; Jain A; Anand-Srivastava MB; Srivastava AK Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1543-H1554. PubMed ID: 33606583 [TBL] [Abstract][Full Text] [Related]
22. Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells. Little GH; Bai Y; Williams T; Poizat C J Biol Chem; 2007 Mar; 282(10):7219-31. PubMed ID: 17179159 [TBL] [Abstract][Full Text] [Related]
23. MEF2A binding to the Glut4 promoter occurs via an AMPKα2-dependent mechanism. Gong H; Xie J; Zhang N; Yao L; Zhang Y Med Sci Sports Exerc; 2011 Aug; 43(8):1441-50. PubMed ID: 21233771 [TBL] [Abstract][Full Text] [Related]
24. β-Adrenergic receptor stimulation and activation of protein kinase A protect against α1-adrenergic-mediated phosphorylation of protein kinase D and histone deacetylase 5. Sucharov CC; Dockstader K; Nunley K; McKinsey TA; Bristow M J Card Fail; 2011 Jul; 17(7):592-600. PubMed ID: 21703532 [TBL] [Abstract][Full Text] [Related]
26. Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes. Nakagawa Y; Kuwahara K; Harada M; Takahashi N; Yasuno S; Adachi Y; Kawakami R; Nakanishi M; Tanimoto K; Usami S; Kinoshita H; Saito Y; Nakao K J Mol Cell Cardiol; 2006 Dec; 41(6):1010-22. PubMed ID: 17011572 [TBL] [Abstract][Full Text] [Related]
27. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Vega RB; Harrison BC; Meadows E; Roberts CR; Papst PJ; Olson EN; McKinsey TA Mol Cell Biol; 2004 Oct; 24(19):8374-85. PubMed ID: 15367659 [TBL] [Abstract][Full Text] [Related]
28. Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Xu X; Ha CH; Wong C; Wang W; Hausser A; Pfizenmaier K; Olson EN; McKinsey TA; Jin ZG Arterioscler Thromb Vasc Biol; 2007 Nov; 27(11):2355-62. PubMed ID: 17823368 [TBL] [Abstract][Full Text] [Related]
29. Alpha-adrenergic signalling activates protein kinase D and causes nuclear efflux of the transcriptional repressor HDAC5 in cultured adult mouse soleus skeletal muscle fibres. Liu Y; Contreras M; Shen T; Randall WR; Schneider MF J Physiol; 2009 Mar; 587(Pt 5):1101-15. PubMed ID: 19124542 [TBL] [Abstract][Full Text] [Related]
31. Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. Dequiedt F; Van Lint J; Lecomte E; Van Duppen V; Seufferlein T; Vandenheede JR; Wattiez R; Kettmann R J Exp Med; 2005 Mar; 201(5):793-804. PubMed ID: 15738054 [TBL] [Abstract][Full Text] [Related]
32. Thyroid hormone induced angiogenesis through the integrin αvβ3/protein kinase D/histone deacetylase 5 signaling pathway. Liu X; Zheng N; Shi YN; Yuan J; Li L J Mol Endocrinol; 2014 Jun; 52(3):245-54. PubMed ID: 24532656 [TBL] [Abstract][Full Text] [Related]
33. Intracellular translocation of histone deacetylase 5 regulates neuronal cell apoptosis. Wei JY; Lu QN; Li WM; He W Brain Res; 2015 Apr; 1604():15-24. PubMed ID: 25661252 [TBL] [Abstract][Full Text] [Related]
34. A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class IIa histone deacetylase kinase. Monovich L; Vega RB; Meredith E; Miranda K; Rao C; Capparelli M; Lemon DD; Phan D; Koch KA; Chapo JA; Hood DB; McKinsey TA FEBS Lett; 2010 Feb; 584(3):631-7. PubMed ID: 20018189 [TBL] [Abstract][Full Text] [Related]
35. Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. Ha CH; Wang W; Jhun BS; Wong C; Hausser A; Pfizenmaier K; McKinsey TA; Olson EN; Jin ZG J Biol Chem; 2008 May; 283(21):14590-9. PubMed ID: 18332134 [TBL] [Abstract][Full Text] [Related]
36. Protein kinase D in the hypertrophy pathway. Sin YY; Baillie GS Biochem Soc Trans; 2012 Feb; 40(1):287-9. PubMed ID: 22260707 [TBL] [Abstract][Full Text] [Related]
37. Evidence for the phosphorylation of serine259 of histone deacetylase 5 by protein kinase Cδ. Huynh QK Arch Biochem Biophys; 2011 Feb; 506(2):173-80. PubMed ID: 21146494 [TBL] [Abstract][Full Text] [Related]
38. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. Backs J; Song K; Bezprozvannaya S; Chang S; Olson EN J Clin Invest; 2006 Jul; 116(7):1853-64. PubMed ID: 16767219 [TBL] [Abstract][Full Text] [Related]
39. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. Chawla S; Vanhoutte P; Arnold FJ; Huang CL; Bading H J Neurochem; 2003 Apr; 85(1):151-9. PubMed ID: 12641737 [TBL] [Abstract][Full Text] [Related]
40. Converse role of class I and class IIa HDACs in the progression of atrial fibrillation. Zhang D; Hu X; Li J; Hoogstra-Berends F; Zhuang Q; Esteban MA; de Groot N; Henning RH; Brundel BJJM J Mol Cell Cardiol; 2018 Dec; 125():39-49. PubMed ID: 30321539 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]