These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22582003)

  • 1. Water Diffusion In And Out Of The β-Barrel Of GFP and The Fast Maturing Fluorescent Protein, TurboGFP.
    Li B; Shahid R; Peshkepija P; Zimmer M
    Chem Phys; 2012 Jan; 392(1):143-148. PubMed ID: 22582003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation.
    Lemay NP; Morgan AL; Archer EJ; Dickson LA; Megley CM; Zimmer M
    Chem Phys; 2008 Jun; 348(1-3):152-160. PubMed ID: 19079566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein.
    Sniegowski JA; Lappe JW; Patel HN; Huffman HA; Wachter RM
    J Biol Chem; 2005 Jul; 280(28):26248-55. PubMed ID: 15888441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein.
    Sniegowski JA; Phail ME; Wachter RM
    Biochem Biophys Res Commun; 2005 Jul; 332(3):657-63. PubMed ID: 15894286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inspecting fluctuation and coordination around chromophore inside green fluorescent protein from water to nonpolar solvent.
    Dai L; Zhang B; Cui S; Yu J
    Proteins; 2019 Jul; 87(7):531-540. PubMed ID: 30788862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromophore formation in green fluorescent protein.
    Reid BG; Flynn GC
    Biochemistry; 1997 Jun; 36(22):6786-91. PubMed ID: 9184161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental identification and theoretical analysis of a thermally stabilized green fluorescent protein variant.
    Akiyama S; Suenaga A; Kobayashi T; Kamioka T; Taiji M; Kuroda Y
    Biochemistry; 2012 Oct; 51(40):7974-82. PubMed ID: 22963334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton Wire Dynamics in the Green Fluorescent Protein.
    Shinobu A; Agmon N
    J Chem Theory Comput; 2017 Jan; 13(1):353-369. PubMed ID: 28068768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hole in the barrel: water exchange at the GFP chromophore.
    Shinobu A; Agmon N
    J Phys Chem B; 2015 Feb; 119(8):3464-78. PubMed ID: 25635627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants.
    Pouwels LJ; Zhang L; Chan NH; Dorrestein PC; Wachter RM
    Biochemistry; 2008 Sep; 47(38):10111-22. PubMed ID: 18759496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom].
    Pletneva NV; Pletnev SV; Chudakov DM; Tikhonova TV; Popov VO; Martynov VI; Wlodawer A; Dauter Z; Pletnev VZ
    Bioorg Khim; 2007; 33(4):421-30. PubMed ID: 17886433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GFP Loss-of-Function Mutations in Arabidopsis thaliana.
    Fu JL; Kanno T; Liang SC; Matzke AJ; Matzke M
    G3 (Bethesda); 2015 Jul; 5(9):1849-55. PubMed ID: 26153075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of cyclization in chromophore maturation of green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Zhang H; Peng L; Yu JG; Smith SC
    J Phys Chem B; 2010 Jul; 114(29):9698-705. PubMed ID: 20593847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collapse and recovery of green fluorescent protein chromophore emission through topological effects.
    Tolbert LM; Baldridge A; Kowalik J; Solntsev KM
    Acc Chem Res; 2012 Feb; 45(2):171-81. PubMed ID: 21861536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies of chromophore maturation in the wild-type green fluorescent protein: ONIOM(DFT:MM) investigation of the mechanism of cyclization.
    Ma Y; Sun Q; Li Z; Yu JG; Smith SC
    J Phys Chem B; 2012 Feb; 116(4):1426-36. PubMed ID: 22212013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
    Rosenow MA; Huffman HA; Phail ME; Wachter RM
    Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.