These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22582069)
1. A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations. Behnam F; Vilcinskas A; Wagner M; Stoecker K Appl Environ Microbiol; 2012 Aug; 78(15):5138-42. PubMed ID: 22582069 [TBL] [Abstract][Full Text] [Related]
2. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Stoecker K; Dorninger C; Daims H; Wagner M Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029 [TBL] [Abstract][Full Text] [Related]
3. MiL-FISH: Multilabeled Oligonucleotides for Fluorescence In Situ Hybridization Improve Visualization of Bacterial Cells. Schimak MP; Kleiner M; Wetzel S; Liebeke M; Dubilier N; Fuchs BM Appl Environ Microbiol; 2016 Jan; 82(1):62-70. PubMed ID: 26475101 [TBL] [Abstract][Full Text] [Related]
4. A Multicolor Fluorescence Lukumbuzya M; Schmid M; Pjevac P; Daims H Front Microbiol; 2019; 10():1383. PubMed ID: 31275291 [TBL] [Abstract][Full Text] [Related]
5. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Hoshino T; Yilmaz LS; Noguera DR; Daims H; Wagner M Appl Environ Microbiol; 2008 Aug; 74(16):5068-77. PubMed ID: 18552182 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence in situ hybridization for the identification of environmental microbes. Pernthaler A; Pernthaler J Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640 [TBL] [Abstract][Full Text] [Related]
7. Improved detection of Salmonella spp. in foods by fluorescent in situ hybridization with 23S rRNA probes: a comparison with conventional culture methods. Fang Q; Brockmann S; Botzenhart K; Wiedenmann A J Food Prot; 2003 May; 66(5):723-31. PubMed ID: 12747677 [TBL] [Abstract][Full Text] [Related]
8. An Introduction to Fluorescence in situ Hybridization in Microorganisms. Almeida C; Azevedo NF Methods Mol Biol; 2021; 2246():1-15. PubMed ID: 33576979 [TBL] [Abstract][Full Text] [Related]
9. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Dedysh SN; Derakshani M; Liesack W Appl Environ Microbiol; 2001 Oct; 67(10):4850-7. PubMed ID: 11571193 [TBL] [Abstract][Full Text] [Related]
10. COMBinatorial Oligonucleotide FISH (COMBO-FISH) with Uniquely Binding Repetitive DNA Probes. Hausmann M; Lee JH; Sievers A; Krufczik M; Hildenbrand G Methods Mol Biol; 2020; 2175():65-77. PubMed ID: 32681484 [TBL] [Abstract][Full Text] [Related]
11. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure. Frischer ME; Floriani PJ; Nierzwicki-Bauer SA Can J Microbiol; 1996 Oct; 42(10):1061-71. PubMed ID: 8890483 [TBL] [Abstract][Full Text] [Related]
12. Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. Lee N; Nielsen PH; Andreasen KH; Juretschko S; Nielsen JL; Schleifer KH; Wagner M Appl Environ Microbiol; 1999 Mar; 65(3):1289-97. PubMed ID: 10049895 [TBL] [Abstract][Full Text] [Related]
13. Selective enumeration of viable Enterobacteriaceae and Pseudomonas spp. in milk within 7 h by multicolor fluorescence in situ hybridization following microcolony formation. Yamaguchi N; Kitaguchi A; Nasu M J Biosci Bioeng; 2012 Jun; 113(6):746-50. PubMed ID: 22309649 [TBL] [Abstract][Full Text] [Related]
14. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). Crocetti G; Murto M; Björnsson L J Microbiol Methods; 2006 Apr; 65(1):194-201. PubMed ID: 16126291 [TBL] [Abstract][Full Text] [Related]
15. Differentiation of two very similar glaucomid ciliate morphospecies (Ciliophora, Tetrahymenida) by fluorescence in situ hybridization with 18S rRNA targeted oligonucleotide probes. Fried J; Foissner W J Eukaryot Microbiol; 2007; 54(4):381-7. PubMed ID: 17669165 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence in situ hybridization for detection of classical propionibacteria with specific 16S rRNA-targeted probes and its application to enumeration in Gruyère cheese. Babot JD; Hidalgo M; Argañaraz-Martínez E; Apella MC; Perez Chaia A Int J Food Microbiol; 2011 Jan; 145(1):221-8. PubMed ID: 21276635 [TBL] [Abstract][Full Text] [Related]
18. Development and field application of a quantitative method for examining natural assemblages of protists with oligonucleotide probes. Lim EL; Caron DA; Delong EF Appl Environ Microbiol; 1996 Apr; 62(4):1416-23. PubMed ID: 8919803 [TBL] [Abstract][Full Text] [Related]
19. 16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization. Mikš-Krajnik M; Babuchowski A Lett Appl Microbiol; 2014 Sep; 59(3):320-7. PubMed ID: 24814284 [TBL] [Abstract][Full Text] [Related]