BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 22582071)

  • 1. Epoxy Coenzyme A Thioester pathways for degradation of aromatic compounds.
    Ismail W; Gescher J
    Appl Environ Microbiol; 2012 Aug; 78(15):5043-51. PubMed ID: 22582071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.
    Carlström CI; Loutey D; Bauer S; Clark IC; Rohde RA; Iavarone AT; Lucas L; Coates JD
    mBio; 2015 Mar; 6(2):. PubMed ID: 25805732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial degradation of aromatic compounds - from one strategy to four.
    Fuchs G; Boll M; Heider J
    Nat Rev Microbiol; 2011 Oct; 9(11):803-16. PubMed ID: 21963803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Aerobic Hybrid Phthalate Degradation Pathway via Phthaloyl-Coenzyme A in Denitrifying Bacteria.
    Ebenau-Jehle C; Soon CISL; Fuchs J; Geiger R; Boll M
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Pathways for Degradation of Aromatic Hydrocarbons by Bacteria.
    Ladino-Orjuela G; Gomes E; da Silva R; Salt C; Parsons JR
    Rev Environ Contam Toxicol; 2016; 237():105-21. PubMed ID: 26613990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 5,6,7,8-Tetrahydro-2-Naphthoyl-Coenzyme A Reductase Reaction in the Anaerobic Degradation of Naphthalene and Identification of Downstream Metabolites.
    Weyrauch P; Heker I; Zaytsev AV; von Hagen CA; Arnold ME; Golding BT; Meckenstock RU
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32444470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic diversity in bacterial degradation of aromatic compounds.
    Phale PS; Basu A; Majhi PD; Deveryshetty J; Vamsee-Krishna C; Shrivastava R
    OMICS; 2007; 11(3):252-79. PubMed ID: 17883338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coenzyme A ligases involved in anaerobic biodegradation of aromatic compounds.
    Villemur R
    Can J Microbiol; 1995 Oct; 41(10):855-61. PubMed ID: 8590400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes.
    Boll M; Löffler C; Morris BE; Kung JW
    Environ Microbiol; 2014 Mar; 16(3):612-27. PubMed ID: 24238333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.
    Pérez-Pantoja D; De la Iglesia R; Pieper DH; González B
    FEMS Microbiol Rev; 2008 Aug; 32(5):736-94. PubMed ID: 18691224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bacterial degradation of benzoic acid and benzenoid compounds under anaerobic conditions: unifying trends and new perspectives.
    Elder DJ; Kelly DJ
    FEMS Microbiol Rev; 1994 Apr; 13(4):441-68. PubMed ID: 8011356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point.
    Teufel R; Gantert C; Voss M; Eisenreich W; Haehnel W; Fuchs G
    J Biol Chem; 2011 Apr; 286(13):11021-34. PubMed ID: 21296885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic biodegradation of aromatic compounds.
    Jothimani P; Kalaichelvan G; Bhaskaran A; Selvaseelan DA; Ramasamy K
    Indian J Exp Biol; 2003 Sep; 41(9):1046-67. PubMed ID: 15242297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes.
    Kuntze K; Shinoda Y; Moutakki H; McInerney MJ; Vogt C; Richnow HH; Boll M
    Environ Microbiol; 2008 Jun; 10(6):1547-56. PubMed ID: 18312395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria.
    Phale PS; Malhotra H; Shah BA
    Adv Appl Microbiol; 2020; 112():1-65. PubMed ID: 32762865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation.
    Rather LJ; Knapp B; Haehnel W; Fuchs G
    J Biol Chem; 2010 Jul; 285(27):20615-24. PubMed ID: 20452977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons.
    Kotoky R; Ogawa N; Pandey P
    Microbiol Res; 2022 Sep; 262():127087. PubMed ID: 35717889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica.
    Heider J; Boll M; Breese K; Breinig S; Ebenau-Jehle C; Feil U; Gad'on N; Laempe D; Leuthner B; Mohamed ME; Schneider S; Burchhardt G; Fuchs G
    Arch Microbiol; 1998 Aug; 170(2):120-31. PubMed ID: 9683649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
    Teufel R; Mascaraque V; Ismail W; Voss M; Perera J; Eisenreich W; Haehnel W; Fuchs G
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14390-5. PubMed ID: 20660314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus.
    Zampolli J; Zeaiter Z; Di Canito A; Di Gennaro P
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1069-1080. PubMed ID: 30554387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.