These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

947 related articles for article (PubMed ID: 22582994)

  • 21. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes.
    Javanainen M; Hammaren H; Monticelli L; Jeon JH; Miettinen MS; Martinez-Seara H; Metzler R; Vattulainen I
    Faraday Discuss; 2013; 161():397-417; discussion 419-59. PubMed ID: 23805752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A learning algorithm to discover soluble vesicle-binding helical peptides.
    Denos S; Gotkowski E; Gruebele M
    J Phys Chem B; 2010 Apr; 114(14):4909-14. PubMed ID: 20232924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Ins and Outs of Lipid Flip-Flop.
    Allhusen JS; Conboy JC
    Acc Chem Res; 2017 Jan; 50(1):58-65. PubMed ID: 27959517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies.
    Silvius JR
    Biochim Biophys Acta; 2005 Dec; 1746(3):193-202. PubMed ID: 16271405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology.
    Lee TH; Hirst DJ; Aguilar MI
    Biochim Biophys Acta; 2015 Sep; 1848(9):1868-85. PubMed ID: 26009270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2004 Jul; 43(27):8846-57. PubMed ID: 15236593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-Brownian diffusion in lipid membranes: Experiments and simulations.
    Metzler R; Jeon JH; Cherstvy AG
    Biochim Biophys Acta; 2016 Oct; 1858(10):2451-2467. PubMed ID: 26826272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles.
    Henriques ST; Castanho MA
    Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study.
    Lin J; Motylinski J; Krauson AJ; Wimley WC; Searson PC; Hristova K
    Langmuir; 2012 Apr; 28(14):6088-96. PubMed ID: 22416892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers.
    Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U
    Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics and thermodynamics of flip-flop in binary phospholipid membranes measured by sum-frequency vibrational spectroscopy.
    Anglin TC; Conboy JC
    Biochemistry; 2009 Nov; 48(43):10220-34. PubMed ID: 19746969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Models of lipid-protein interactions in membranes.
    Mouritsen OG; Bloom M
    Annu Rev Biophys Biomol Struct; 1993; 22():145-71. PubMed ID: 8347987
    [No Abstract]   [Full Text] [Related]  

  • 36. Detergent effects on membranes at subsolubilizing concentrations: transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena.
    Ahyayauch H; Bennouna M; Alonso A; Goñi FM
    Langmuir; 2010 May; 26(10):7307-13. PubMed ID: 20170131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical landscapes in biological membranes: physico-chemical terrains for spatio-temporal control of biomolecular interactions and behaviour.
    O'Shea P
    Philos Trans A Math Phys Eng Sci; 2005 Feb; 363(1827):575-88. PubMed ID: 15664900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid lateral mobility and membrane phase structure modulation by protein binding.
    Forstner MB; Yee CK; Parikh AN; Groves JT
    J Am Chem Soc; 2006 Nov; 128(47):15221-7. PubMed ID: 17117874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.