These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 22583052)

  • 1. Solution NMR studies of peptide-lipid interactions in model membranes.
    Mäler L
    Mol Membr Biol; 2012 Aug; 29(5):155-76. PubMed ID: 22583052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution NMR studies of cell-penetrating peptides in model membrane systems.
    Mäler L
    Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving the kinetics of lipid, protein and peptide diffusion in membranes.
    Sanderson JM
    Mol Membr Biol; 2012 Aug; 29(5):118-43. PubMed ID: 22582994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solution NMR view of protein dynamics in the biological membrane.
    Chill JH; Naider F
    Curr Opin Struct Biol; 2011 Oct; 21(5):627-33. PubMed ID: 21807499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR studies of three-dimensional structure and positioning of CPPs in membrane model systems.
    Mäler L; Gräslund A
    Methods Mol Biol; 2011; 683():57-67. PubMed ID: 21053122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments.
    Bechinger B; Resende JM; Aisenbrey C
    Biophys Chem; 2011 Jan; 153(2-3):115-25. PubMed ID: 21145159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes.
    Bagatolli LA; Ipsen JH; Simonsen AC; Mouritsen OG
    Prog Lipid Res; 2010 Oct; 49(4):378-89. PubMed ID: 20478336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers.
    Calvez P; Bussières S; Eric Demers ; Salesse C
    Biochimie; 2009 Jun; 91(6):718-33. PubMed ID: 19345719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state (19)F-NMR of peptides in native membranes.
    Koch K; Afonin S; Ieronimo M; Berditsch M; Ulrich AS
    Top Curr Chem; 2012; 306():89-118. PubMed ID: 21598096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model membrane platforms to study protein-membrane interactions.
    Sezgin E; Schwille P
    Mol Membr Biol; 2012 Aug; 29(5):144-54. PubMed ID: 22831167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids.
    Afonin S; Glaser RW; Sachse C; Salgado J; Wadhwani P; Ulrich AS
    Biochim Biophys Acta; 2014 Sep; 1838(9):2260-8. PubMed ID: 24699372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study.
    Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH
    Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state 17O NMR as a probe for structural studies of proteins in biomembranes.
    Lemaître V; de Planque MR; Howes AP; Smith ME; Dupree R; Watts A
    J Am Chem Soc; 2004 Dec; 126(47):15320-1. PubMed ID: 15563125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progression of NMR studies of membrane-active peptides from lipid bilayers to live cells.
    Sani MA; Separovic F
    J Magn Reson; 2015 Apr; 253():138-42. PubMed ID: 25631783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-associated proteins and peptides.
    Lensink MF
    Methods Mol Biol; 2008; 443():161-79. PubMed ID: 18446287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution NMR of membrane proteins: practice and challenges.
    Sanders CR; Sönnichsen F
    Magn Reson Chem; 2006 Jul; 44 Spec No():S24-40. PubMed ID: 16826539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical landscapes in biological membranes: physico-chemical terrains for spatio-temporal control of biomolecular interactions and behaviour.
    O'Shea P
    Philos Trans A Math Phys Eng Sci; 2005 Feb; 363(1827):575-88. PubMed ID: 15664900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using fluorine nuclear magnetic resonance to probe the interaction of membrane-active peptides with the lipid bilayer.
    Buer BC; Chugh J; Al-Hashimi HM; Marsh EN
    Biochemistry; 2010 Jul; 49(27):5760-5. PubMed ID: 20527804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disordered proteins: biological membranes as two-dimensional aggregation matrices.
    Byström R; Aisenbrey C; Borowik T; Bokvist M; Lindström F; Sani MA; Olofsson A; Gröbner G
    Cell Biochem Biophys; 2008; 52(3):175-89. PubMed ID: 18975139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.