BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22583266)

  • 21. The nitrogen edge-doped effect on the static first hyperpolarizability of the supershort single-walled carbon nanotube.
    Xu HL; Wang FF; Li ZR; Wang BQ; Wu D; Chen W; Yu GT; Gu FL; Aoki Y
    J Comput Chem; 2009 May; 30(7):1128-34. PubMed ID: 18942737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of ion permeation in a model channel: Free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube.
    Sumikama T; Saito S; Ohmine I
    J Phys Chem B; 2006 Oct; 110(41):20671-7. PubMed ID: 17034258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups.
    Allen BL; Kichambare PD; Star A
    ACS Nano; 2008 Sep; 2(9):1914-20. PubMed ID: 19206432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of water permeation across a nanochannel by the structure outside the channel.
    Gong X; Li J; Zhang H; Wan R; Lu H; Wang S; Fang H
    Phys Rev Lett; 2008 Dec; 101(25):257801. PubMed ID: 19113752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water transport and purification in nanochannels controlled by asymmetric wettability.
    Chen Q; Meng L; Li Q; Wang D; Guo W; Shuai Z; Jiang L
    Small; 2011 Aug; 7(15):2225-31. PubMed ID: 21608126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of flexibility on hydrophobic behavior of nanotube water channels.
    Andreev S; Reichman D; Hummer G
    J Chem Phys; 2005 Nov; 123(19):194502. PubMed ID: 16321095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The frequency of cantilevered double-wall carbon nanotube resonators as a function of outer wall length.
    Kang JW; Choi YG; Kim Y; Jiang Q; Kwon OK; Hwang HJ
    J Phys Condens Matter; 2009 Sep; 21(38):385301. PubMed ID: 21832365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Van der Waals interaction between two crossed carbon nanotubes.
    Zhbanov AI; Pogorelov EG; Chang YC
    ACS Nano; 2010 Oct; 4(10):5937-45. PubMed ID: 20863127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entrapment of a water wire in a hydrophobic peptide channel with an aromatic lining.
    Raghavender US; Chatterjee B; Saha I; Rajagopal A; Shamala N; Balaram P
    J Phys Chem B; 2011 Jul; 115(29):9236-43. PubMed ID: 21639147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the position of constriction on water permeation across a single-walled carbon nanotube.
    Wu L; Wu F; Kou J; Lu H; Liu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061913. PubMed ID: 21797409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls.
    Bonthuis DJ; Rinne KF; Falk K; Nadir Kaplan C; Horinek D; Nihat Berker A; Bocquet L; Netz RR
    J Phys Condens Matter; 2011 May; 23(18):184110. PubMed ID: 21508478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube.
    Hirotani J; Ikuta T; Nishiyama T; Takahashi K
    J Phys Condens Matter; 2013 Jan; 25(2):025301. PubMed ID: 23196929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.
    Lim MC; Zhong ZW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041915. PubMed ID: 19905350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution.
    Kim JH; Kataoka M; Fujisawa K; Tojo T; Muramatsu H; Vega-Díaz SM; Tristán-López F; Hayashi T; Kim YA; Endo M; Terrones M; Dresselhaus MS
    J Phys Chem B; 2011 Dec; 115(48):14295-300. PubMed ID: 22011214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular-dynamic studies of carbon-water-carbon composite nanotubes.
    Zou J; Ji B; Feng XQ; Gao H
    Small; 2006 Nov; 2(11):1348-55. PubMed ID: 17192986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical properties and far infrared optical conductivity of boron-doped single-walled carbon nanotube films.
    Liu XM; Gutiérrez HR; Eklund PC
    J Phys Condens Matter; 2010 Aug; 22(33):334213. PubMed ID: 21386503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.