These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 22583392)
1. Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations. Myshkin E; Brennan R; Khasanova T; Sitnik T; Serebriyskaya T; Litvinova E; Guryanov A; Nikolsky Y; Nikolskaya T; Bureeva S Chem Biol Drug Des; 2012 Sep; 80(3):406-16. PubMed ID: 22583392 [TBL] [Abstract][Full Text] [Related]
2. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs. Chen M; Hong H; Fang H; Kelly R; Zhou G; Borlak J; Tong W Toxicol Sci; 2013 Nov; 136(1):242-9. PubMed ID: 23997115 [TBL] [Abstract][Full Text] [Related]
3. Phenotypic and genotypic assessment of concomitant drug-induced toxic effects in liver, kidney and blood. Dadarkar SS; Fonseca LC; Mishra PB; Lobo AS; Doshi LS; Dagia NM; Rangasamy AK; Padigaru M J Appl Toxicol; 2011 Mar; 31(2):117-30. PubMed ID: 20623750 [TBL] [Abstract][Full Text] [Related]
4. Developing a QSAR model for hepatotoxicity screening of the active compounds in traditional Chinese medicines. Huang SH; Tung CW; Fülöp F; Li JH Food Chem Toxicol; 2015 Apr; 78():71-7. PubMed ID: 25660478 [TBL] [Abstract][Full Text] [Related]
5. Prediction of drug induced liver injury using molecular and biological descriptors. Muller C; Pekthong D; Alexandre E; Marcou G; Horvath D; Richert L; Varnek A Comb Chem High Throughput Screen; 2015; 18(3):315-22. PubMed ID: 25747442 [TBL] [Abstract][Full Text] [Related]
6. Most Influential Physicochemical and In Vitro Assay Descriptors for Hepatotoxicity and Nephrotoxicity Prediction. Rana P; Kogut S; Wen X; Akhlaghi F; Aleo MD Chem Res Toxicol; 2020 Jul; 33(7):1780-1790. PubMed ID: 32338883 [TBL] [Abstract][Full Text] [Related]
7. Human nephrotoxicity prediction models for three types of kidney injury based on data sets of pharmacological compounds and their metabolites. Lee S; Kang YM; Park H; Dong MS; Shin JM; No KT Chem Res Toxicol; 2013 Nov; 26(11):1652-9. PubMed ID: 24138086 [TBL] [Abstract][Full Text] [Related]
8. Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Fourches D; Barnes JC; Day NC; Bradley P; Reed JZ; Tropsha A Chem Res Toxicol; 2010 Jan; 23(1):171-83. PubMed ID: 20014752 [TBL] [Abstract][Full Text] [Related]
9. Modeling liver-related adverse effects of drugs using knearest neighbor quantitative structure-activity relationship method. Rodgers AD; Zhu H; Fourches D; Rusyn I; Tropsha A Chem Res Toxicol; 2010 Apr; 23(4):724-32. PubMed ID: 20192250 [TBL] [Abstract][Full Text] [Related]
10. Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: Part B. Use of (Q)SAR systems for early detection of drug-induced hepatobiliary and urinary tract toxicities. Matthews EJ; Ursem CJ; Kruhlak NL; Benz RD; Sabaté DA; Yang C; Klopman G; Contrera JF Regul Toxicol Pharmacol; 2009 Jun; 54(1):23-42. PubMed ID: 19422098 [TBL] [Abstract][Full Text] [Related]
11. Construction and analysis of a human hepatotoxicity database suitable for QSAR modeling using post-market safety data. Zhu X; Kruhlak NL Toxicology; 2014 Jul; 321():62-72. PubMed ID: 24721472 [TBL] [Abstract][Full Text] [Related]
12. The use of hepatocytes to investigate drug toxicity. Gómez-Lechón MJ; Castell JV; Donato MT Methods Mol Biol; 2010; 640():389-415. PubMed ID: 20645064 [TBL] [Abstract][Full Text] [Related]
13. Prediction of adverse drug reactions using decision tree modeling. Hammann F; Gutmann H; Vogt N; Helma C; Drewe J Clin Pharmacol Ther; 2010 Jul; 88(1):52-9. PubMed ID: 20220749 [TBL] [Abstract][Full Text] [Related]
14. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity. Cruz-Monteagudo M; Cordeiro MN; Borges F J Comput Chem; 2008 Mar; 29(4):533-49. PubMed ID: 17705164 [TBL] [Abstract][Full Text] [Related]
15. Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans. Part A: use of FDA post-market reports to create a database of hepatobiliary and urinary tract toxicities. Ursem CJ; Kruhlak NL; Contrera JF; MacLaughlin PM; Benz RD; Matthews EJ Regul Toxicol Pharmacol; 2009 Jun; 54(1):1-22. PubMed ID: 19422096 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Lin Z; Will Y Toxicol Sci; 2012 Mar; 126(1):114-27. PubMed ID: 22166485 [TBL] [Abstract][Full Text] [Related]
17. Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules. Te JA; AbdulHameed MD; Wallqvist A J Appl Toxicol; 2016 Sep; 36(9):1137-49. PubMed ID: 26725466 [TBL] [Abstract][Full Text] [Related]
18. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
19. Hybrid in silico models for drug-induced liver injury using chemical descriptors and in vitro cell-imaging information. Zhu XW; Sedykh A; Liu SS J Appl Toxicol; 2014 Mar; 34(3):281-8. PubMed ID: 23640866 [TBL] [Abstract][Full Text] [Related]
20. Toward predictive models for drug-induced liver injury in humans: are we there yet? Chen M; Bisgin H; Tong L; Hong H; Fang H; Borlak J; Tong W Biomark Med; 2014; 8(2):201-13. PubMed ID: 24521015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]