These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22583575)

  • 61. Selective dehybridization of DNA-Au nanoconjugates using laser irradiation.
    Asanuma H; Jiang Z; Ikeda K; Uosaki K; Yu HZ
    Phys Chem Chem Phys; 2013 Oct; 15(38):15995-6000. PubMed ID: 23959057
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fluorescence dynamics of DNA condensed by the molecular crowding agent poly(ethylene glycol).
    Kombrabail MH; Krishnamoorthy G
    J Fluoresc; 2005 Sep; 15(5):741-7. PubMed ID: 16341792
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Smuggling gold nanoparticles across cell types - A new role for exosomes in gene silencing.
    Roma-Rodrigues C; Pereira F; Alves de Matos AP; Fernandes M; Baptista PV; Fernandes AR
    Nanomedicine; 2017 May; 13(4):1389-1398. PubMed ID: 28137659
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Comprehensive Biophysical Analysis of the Effect of DNA Binding Drugs on Protamine-induced DNA Condensation.
    Gupta S; Tiwari N; Munde M
    Sci Rep; 2019 Apr; 9(1):5891. PubMed ID: 30971720
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization and performance of nucleic acid nanoparticles combined with protamine and gold.
    DeLong RK; Akhtar U; Sallee M; Parker B; Barber S; Zhang J; Craig M; Garrad R; Hickey AJ; Engstrom E
    Biomaterials; 2009 Nov; 30(32):6451-9. PubMed ID: 19726081
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles.
    Jiang X; Qu W; Pan D; Ren Y; Williford JM; Cui H; Luijten E; Mao HQ
    Adv Mater; 2013 Jan; 25(2):227-32. PubMed ID: 23055399
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PEGylated Protamine-Based Adsorbing Improves the Biological Properties and Stability of Tetrahedral Framework Nucleic Acids.
    Ge Y; Tian T; Shao X; Lin S; Zhang T; Lin Y; Cai X
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27588-27597. PubMed ID: 31298033
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Observation of DNA-polymer condensate formation in real time at a molecular level.
    Martin AL; Davies MC; Rackstraw BJ; Roberts CJ; Stolnik S; Tendler SJ; Williams PM
    FEBS Lett; 2000 Sep; 480(2-3):106-12. PubMed ID: 11034309
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vitro studies of DNA condensation by bridging protein in a crowding environment.
    Ramisetty SK; Langlete P; Lale R; Dias RS
    Int J Biol Macromol; 2017 Oct; 103():845-853. PubMed ID: 28536019
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells.
    Sivamani E; DeLong RK; Qu R
    Plant Cell Rep; 2009 Feb; 28(2):213-21. PubMed ID: 19015859
    [TBL] [Abstract][Full Text] [Related]  

  • 71. How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles.
    Hou S; Trochimczyk P; Sun L; Wisniewska A; Kalwarczyk T; Zhang X; Wielgus-Kutrowska B; Bzowska A; Holyst R
    Sci Rep; 2016 Feb; 6():22033. PubMed ID: 26903405
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Macroscopic and tunable nanoparticle superlattices.
    Zhang H; Wang W; Mallapragada S; Travesset A; Vaknin D
    Nanoscale; 2017 Jan; 9(1):164-171. PubMed ID: 27791213
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Concentrating genomic length DNA in a microfabricated array.
    Chen Y; Abrams ES; Boles TC; Pedersen JN; Flyvbjerg H; Austin RH; Sturm JC
    Phys Rev Lett; 2015 May; 114(19):198303. PubMed ID: 26024203
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Impact of Gold Nanoparticles on Testosterone Metabolism in Human Liver Microsomes.
    Choi K; Joo H
    Nanoscale Res Lett; 2019 Jun; 14(1):205. PubMed ID: 31209583
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessment of Gold Nanoparticles-Inhibited Cytochrome P450 3A4 Activity and Molecular Mechanisms Underlying Its Cellular Toxicity in Human Hepatocellular Carcinoma Cell Line C3A.
    Choi K; Joo H
    Nanoscale Res Lett; 2018 Sep; 13(1):279. PubMed ID: 30203228
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PEGylation of Goldbody: PEG-aided conformational engineering of peptides on gold nanoparticles.
    Gao T; Liu YY; Lou C; Wang H; Liu Y; Cao A
    RSC Adv; 2022 Sep; 12(40):26123-26133. PubMed ID: 36275117
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Recent biochemical data on the relation between desoxyribonucleic acid and basic proteins in the nucleus].
    VENDRELY R; KNOBLOCH-MAZEN A; VENDRELY C
    Biochem Pharmacol; 1960 Aug; 4():19-28. PubMed ID: 13780700
    [No Abstract]   [Full Text] [Related]  

  • 78. New Nanomedicine Approaches Using Gold-thioguanine Nanoconjugates as Metallo-ligands.
    Sleightholm L; Zambre A; Chanda N; Afrasiabi Z; Katti K; Kannan R
    Inorganica Chim Acta; 2011 Jun; 372(1):333-339. PubMed ID: 21709763
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing.
    Conde J; Ambrosone A; Sanz V; Hernandez Y; Marchesano V; Tian F; Child H; Berry CC; Ibarra MR; Baptista PV; Tortiglione C; de la Fuente JM
    ACS Nano; 2012 Sep; 6(9):8316-24. PubMed ID: 22882598
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Zero-length crosslinking procedure with the use of active esters.
    Grabarek Z; Gergely J
    Anal Biochem; 1990 Feb; 185(1):131-5. PubMed ID: 2344038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.