These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22583745)

  • 1. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
    Mustafi N; Grünberger A; Kohlheyer D; Bott M; Frunzke J
    Metab Eng; 2012 Jul; 14(4):449-57. PubMed ID: 22583745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.
    Lange C; Mustafi N; Frunzke J; Kennerknecht N; Wessel M; Bott M; Wendisch VF
    J Biotechnol; 2012 Apr; 158(4):231-41. PubMed ID: 21683740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.
    Mustafi N; Grünberger A; Mahr R; Helfrich S; Nöh K; Blombach B; Kohlheyer D; Frunzke J
    PLoS One; 2014; 9(1):e85731. PubMed ID: 24465669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
    Mahr R; Gätgens C; Gätgens J; Polen T; Kalinowski J; Frunzke J
    Metab Eng; 2015 Nov; 32():184-194. PubMed ID: 26453945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics of FACS-sorted heterogeneous Corynebacterium glutamicum populations.
    Harst A; Albaum SP; Bojarzyn T; Trötschel C; Poetsch A
    J Proteomics; 2017 May; 160():1-7. PubMed ID: 28323243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of l-Valine Production by Atmospheric and Room Temperature Plasma Mutagenesis and High-Throughput Screening in
    Han G; Xu N; Sun X; Chen J; Chen C; Wang Q
    ACS Omega; 2020 Mar; 5(10):4751-4758. PubMed ID: 32201760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE.
    Yin L; Shi F; Hu X; Chen C; Wang X
    J Appl Microbiol; 2013 May; 114(5):1369-77. PubMed ID: 23331988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing
    Ma Y; Chen Q; Cui Y; Du L; Shi T; Xu Q; Ma Q; Xie X; Chen N
    J Microbiol Biotechnol; 2018 Nov; 28(11):1916-1927. PubMed ID: 30562884
    [No Abstract]   [Full Text] [Related]  

  • 9. Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum.
    Schulte J; Baumgart M; Bott M
    J Biotechnol; 2017 Sep; 258():33-40. PubMed ID: 28698098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.
    Zhang X; Zhang X; Xu G; Zhang X; Shi J; Xu Z
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5939-5951. PubMed ID: 29725721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Control of 4-Hydroxyisoleucine Biosynthesis by Modified l-Isoleucine Biosensor in Recombinant
    Tan S; Shi F; Liu H; Yu X; Wei S; Fan Z; Li Y
    ACS Synth Biol; 2020 Sep; 9(9):2378-2389. PubMed ID: 32813974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum.
    Liu C; Zhang B; Liu YM; Yang KQ; Liu SJ
    ACS Synth Biol; 2018 Feb; 7(2):591-601. PubMed ID: 29087704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of L-valine from metabolically engineered Corynebacterium glutamicum.
    Wang X; Zhang H; Quinn PJ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4319-4330. PubMed ID: 29594358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OLIVe: A Genetically Encoded Fluorescent Biosensor for Quantitative Imaging of Branched-Chain Amino Acid Levels inside Single Living Cells.
    Yoshida T; Nakajima H; Takahashi S; Kakizuka A; Imamura H
    ACS Sens; 2019 Dec; 4(12):3333-3342. PubMed ID: 31845569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative metabolomic analysis reveals different evolutionary mechanisms for branched-chain amino acids production.
    Ma Q; Mo X; Zhang Q; Hou Z; Tan M; Xia L; Sun Q; Xie X; Chen N
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):85-95. PubMed ID: 31541312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production].
    Zhang H; Li Y; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1606-1619. PubMed ID: 30394028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.
    Elisáková V; Pátek M; Holátko J; Nesvera J; Leyval D; Goergen JL; Delaunay S
    Appl Environ Microbiol; 2005 Jan; 71(1):207-13. PubMed ID: 15640189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum.
    Guo Y; Han M; Xu J; Zhang W
    Protein Expr Purif; 2015 May; 109():106-12. PubMed ID: 25697867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum.
    Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.