These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 22583920)

  • 21. A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation.
    Huang G; Daphalapurkar NP; Gan RZ; Lu H
    J Biomech Eng; 2008 Feb; 130(1):014501. PubMed ID: 18298192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping the Young's modulus distribution of the human tympanic membrane by microindentation.
    Luo H; Wang F; Cheng C; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2019 Jul; 378():75-91. PubMed ID: 30853348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three approaches for estimating the elastic modulus of the tympanic membrane.
    Fay J; Puria S; Decraemer WF; Steele C
    J Biomech; 2005 Sep; 38(9):1807-15. PubMed ID: 16023467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis.
    Lee CF; Hsu LP; Chen PR; Chou YF; Chen JH; Liu TC
    Audiol Neurootol; 2006; 11(6):380-8. PubMed ID: 16988502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of the Papio anubis tympanic membrane: Change significantly from infancy to adulthood.
    Liang J; Smith KD; Lu H; Seale TW; Gan RZ
    Hear Res; 2018 Dec; 370():143-154. PubMed ID: 30388572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection.
    Liang J; Luo H; Yokell Z; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2016 Sep; 339():1-11. PubMed ID: 27240479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic indentation on human skin in vivo: ageing effects.
    Boyer G; Laquièze L; Le Bot A; Laquièze S; Zahouani H
    Skin Res Technol; 2009 Feb; 15(1):55-67. PubMed ID: 19152580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Young's modulus of peritubular and intertubular human dentin by nano-indentation tests.
    Ziskind D; Hasday M; Cohen SR; Wagner HD
    J Struct Biol; 2011 Apr; 174(1):23-30. PubMed ID: 20850543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation.
    Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P
    J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic properties of human tympanic membrane based on frequency-temperature superposition.
    Zhang X; Gan RZ
    Ann Biomed Eng; 2013 Jan; 41(1):205-14. PubMed ID: 22820983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.
    Julkunen P; Harjula T; Marjanen J; Helminen HJ; Jurvelin JS
    J Biomech; 2009 Mar; 42(5):652-6. PubMed ID: 19193381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic characterization of the gerbil pars flaccida from in situ inflation experiments.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2011 Oct; 10(5):727-41. PubMed ID: 21069415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.
    Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P
    J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of Glisson's capsule on the superficial elasticity measurements of the liver.
    Roan E
    J Biomech Eng; 2010 Oct; 132(10):104504. PubMed ID: 20887022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.