These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2258414)

  • 1. Surfactant-mediated hydrophobic interaction chromatography of proteins: gradient elution.
    Buckley JJ; Wetlaufer DB
    J Chromatogr; 1990 Sep; 518(1):99-110. PubMed ID: 2258414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the surfactant 3-(3-cholamidopropyl)-dimethyl-ammoniopropane sulfonate in hydrophobic interaction chromatography of proteins.
    Buckley JJ; Wetlaufer DB
    J Chromatogr; 1989 Feb; 464(1):61-71. PubMed ID: 2715250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-mediated protein hydrophobic-interaction chromatography.
    Wetlaufer DB; Koenigbauer MR
    J Chromatogr; 1986 May; 359():55-60. PubMed ID: 3733942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobile phase effects on membrane protein elution during immobilized artificial membrane chromatography.
    Pidgeon C; Cai SJ; Bernal C
    J Chromatogr A; 1996 Jan; 721(2):213-30. PubMed ID: 8611940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary and ternary salt gradients in hydrophobic-interaction chromatography of proteins.
    el Rassi Z; De Ocampo LF; Bacolod MD
    J Chromatogr; 1990 Jan; 499():141-52. PubMed ID: 2324205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatography of proteins on hydrophobic interaction and ion-exchange chromatographic matrices: mobile phase contributions to selectivity.
    Heinitz ML; Kennedy L; Kopaciewicz W; Regnier FE
    J Chromatogr; 1988 Jun; 443():173-82. PubMed ID: 3170685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab(®): separation of basic compounds in urine samples.
    Rodenas-Montano J; Ortiz-Bolsico C; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2014 May; 1344():31-41. PubMed ID: 24767834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the resolving power of hydrophobic interaction chromatography for intact protein analysis on non-porous butyl polymethacrylate phases.
    Ewonde RE; De Vos J; Broeckhoven K; Eβer D; Eeltink S
    J Chromatogr A; 2021 Aug; 1651():462310. PubMed ID: 34166860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional reconstitution of the nicotinic acetylcholine receptor by CHAPS dialysis depends on the concentrations of salt, lipid, and protein.
    Schürholz T; Kehne J; Gieselmann A; Neumann E
    Biochemistry; 1992 Jun; 31(21):5067-77. PubMed ID: 1599929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study to protein retention in hydrophobic interaction chromatography.
    Baca M; De Vos J; Bruylants G; Bartik K; Liu X; Cook K; Eeltink S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():182-188. PubMed ID: 27237734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering efficiency of hydrophobic interaction chromatography by combined salt and temperature effects.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Dec; 1216(50):8712-21. PubMed ID: 19419727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of chiral zwitterionic surfactants for enantiomeric resolutions by capillary electrophoresis.
    Hadley MR; Harrison MW; Hutt AJ
    Electrophoresis; 2003 Aug; 24(15):2508-13. PubMed ID: 12900862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic characterization of 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) micellization using isothermal titration calorimetry: temperature, salt, and pH dependence.
    Kroflič A; Sarac B; Bešter-Rogač M
    Langmuir; 2012 Jul; 28(28):10363-71. PubMed ID: 22686523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient elution behavior of proteins in hydrophobic interaction chromatography with a U-shaped retention factor curve under overloaded conditions.
    Creasy A; Lomino J; Carta G
    J Chromatogr A; 2018 Nov; 1578():28-34. PubMed ID: 30316612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins.
    Fausnaugh JL; Kennedy LA; Regnier FE
    J Chromatogr; 1984 Dec; 317():141-55. PubMed ID: 6530430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves.
    Creasy A; Lomino J; Barker G; Khetan A; Carta G
    J Chromatogr A; 2018 Apr; 1547():53-61. PubMed ID: 29551240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational studies of bovine alkaline phosphatase in hydrophobic interaction and size-exclusion chromatography with linear diode array and low-angle laser light scattering detection.
    Krull IS; Stuting HH; Krzysko SC
    J Chromatogr; 1988 Jun; 442():29-52. PubMed ID: 3417821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention characteristics of some antibiotic and anti-retroviral compounds in hydrophilic interaction chromatography using isocratic elution, and gradient elution with repeatable partial equilibration.
    Heaton JC; Smith NW; McCalley DV
    Anal Chim Acta; 2019 Jan; 1045():141-151. PubMed ID: 30454569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid phase extraction of the zwitterionic detergent chaps.
    Hall SW; VandenBerg SR
    Prep Biochem; 1989; 19(1):1-11. PubMed ID: 2740288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zwitterionic detergent mediated interaction of purified cytochrome P-450LM4 from 5,6-benzoflavone-treated rabbits with MADPH-cytochrome P-450 reductase.
    Wagner SL; Dean WL; Gray RD
    Biochemistry; 1987 Apr; 26(8):2343-8. PubMed ID: 3113479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.