BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22585108)

  • 1. Guiding plant virus particles to integrin-displaying cells.
    Hovlid ML; Steinmetz NF; Laufer B; Lau JL; Kuzelka J; Wang Q; Hyypiä T; Nemerow GR; Kessler H; Manchester M; Finn MG
    Nanoscale; 2012 Jun; 4(12):3698-705. PubMed ID: 22585108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoselective modification of turnip yellow mosaic virus by Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction and its application in cell binding.
    Zeng Q; Saha S; Lee LA; Barnhill H; Oxsher J; Dreher T; Wang Q
    Bioconjug Chem; 2011 Jan; 22(1):58-66. PubMed ID: 21166476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells.
    Destito G; Yeh R; Rae CS; Finn MG; Manchester M
    Chem Biol; 2007 Oct; 14(10):1152-62. PubMed ID: 17961827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor.
    Pokorski JK; Hovlid ML; Finn MG
    Chembiochem; 2011 Nov; 12(16):2441-7. PubMed ID: 21956837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.
    Wang Q; Chan TR; Hilgraf R; Fokin VV; Sharpless KB; Finn MG
    J Am Chem Soc; 2003 Mar; 125(11):3192-3. PubMed ID: 12630856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism.
    Shi W; Bartlett JS
    Mol Ther; 2003 Apr; 7(4):515-25. PubMed ID: 12727115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed polyvalent display of sulfated ligands on virus nanoparticles elicits heparin-like anticoagulant activity.
    Mead G; Hiley M; Ng T; Fihn C; Hong K; Groner M; Miner W; Drugan D; Hollingsworth W; Udit AK
    Bioconjug Chem; 2014 Aug; 25(8):1444-52. PubMed ID: 24960223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral nanoparticles for in vivo tumor imaging.
    Wen AM; Lee KL; Yildiz I; Bruckman MA; Shukla S; Steinmetz NF
    J Vis Exp; 2012 Nov; (69):e4352. PubMed ID: 23183850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Clickable" elastins: elastin-like polypeptides functionalized with azide or alkyne groups.
    Teeuwen RL; van Berkel SS; van Dulmen TH; Schoffelen S; Meeuwissen SA; Zuilhof H; de Wolf FA; van Hest JC
    Chem Commun (Camb); 2009 Jul; (27):4022-4. PubMed ID: 19568620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-controlled access to the interior surface of empty virus nanoparticles.
    Sainsbury F; Saunders K; Aljabali AA; Evans DJ; Lomonossoff GP
    Chembiochem; 2011 Nov; 12(16):2435-40. PubMed ID: 21953809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles.
    Banerjee D; Liu AP; Voss NR; Schmid SL; Finn MG
    Chembiochem; 2010 Jun; 11(9):1273-9. PubMed ID: 20455239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of copper(I) catalyzed azide-alkyne [3+2] cycloaddition to the synthesis of template-assembled multivalent peptide conjugates.
    Avrutina O; Empting M; Fabritz S; Daneschdar M; Frauendorf H; Diederichsen U; Kolmar H
    Org Biomol Chem; 2009 Oct; 7(20):4177-85. PubMed ID: 19795056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering and characterization of Cowpea mosaic virus empty virus-like particles.
    Sainsbury F; Saxena P; Aljabali AA; Saunders K; Evans DJ; Lomonossoff GP
    Methods Mol Biol; 2014; 1108():139-53. PubMed ID: 24243247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of viral nanoparticles for efficient intracellular delivery.
    Wu Z; Chen K; Yildiz I; Dirksen A; Fischer R; Dawson PE; Steinmetz NF
    Nanoscale; 2012 Jun; 4(11):3567-76. PubMed ID: 22508503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.
    Zhang X; Liu P; Zhu L
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeling live cells by copper-catalyzed alkyne--azide click chemistry.
    Hong V; Steinmetz NF; Manchester M; Finn MG
    Bioconjug Chem; 2010 Oct; 21(10):1912-6. PubMed ID: 20886827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Presolski S
    Methods Mol Biol; 2018; 1798():187-193. PubMed ID: 29868960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.
    Zhu L; Brassard CJ; Zhang X; Guha PM; Clark RJ
    Chem Rec; 2016 Jun; 16(3):1501-17. PubMed ID: 27216993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Clickable" and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide-Specific Cell Attachment.
    Poręba R; de Los Santos Pereira A; Pola R; Jiang S; Pop-Georgievski O; Sedláková Z; Schönherr H
    Macromol Biosci; 2020 Apr; 20(4):e1900354. PubMed ID: 32077245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.