These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 22585138)
1. Catalytic metal-free intramolecular hydroaminations of non-activated aminoalkenes: a computational exploration. Li H; Wen M; Lu G; Wang ZX Dalton Trans; 2012 Aug; 41(30):9091-100. PubMed ID: 22585138 [TBL] [Abstract][Full Text] [Related]
2. Metal-free catalysts for hydrogenation of both small and large imines: a computational experiment. Zhao L; Li H; Lu G; Huang F; Zhang C; Wang ZX Dalton Trans; 2011 Mar; 40(9):1929-37. PubMed ID: 21258736 [TBL] [Abstract][Full Text] [Related]
3. [Ir(COD)Cl]2 as a catalyst precursor for the intramolecular hydroamination of unactivated alkenes with primary amines and secondary alkyl- or arylamines: a combined catalytic, mechanistic, and computational investigation. Hesp KD; Tobisch S; Stradiotto M J Am Chem Soc; 2010 Jan; 132(1):413-26. PubMed ID: 20000354 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular aminoalkene hydroamination mediated by a tethered bis(ureate)zirconium complex: computational perusal of various pathways for aminoalkene activation. Tobisch S Inorg Chem; 2012 Mar; 51(6):3786-95. PubMed ID: 22372419 [TBL] [Abstract][Full Text] [Related]
5. Metal-ligand cooperation in catalytic intramolecular hydroamination: a computational study of iridium-pyrazolato cooperative activation of aminoalkenes. Tobisch S Chemistry; 2012 Jun; 18(23):7248-62. PubMed ID: 22549963 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic elucidation of the yttrium(III)-catalysed intramolecular aminoalkene hydroamination: DFT favours a stepwise σ-insertive mechanism. Tobisch S Dalton Trans; 2012 Aug; 41(30):9182-91. PubMed ID: 22714867 [TBL] [Abstract][Full Text] [Related]
7. Does a concerted non-insertive mechanism prevail over a σ-insertive mechanism in catalytic cyclohydroamination by magnesium tris(oxazolinyl)phenylborate compounds? A computational study. Tobisch S Chemistry; 2011 Dec; 17(52):14974-86. PubMed ID: 22120897 [TBL] [Abstract][Full Text] [Related]
8. Phenalenyl-based organozinc catalysts for intramolecular hydroamination reactions: a combined catalytic, kinetic, and mechanistic investigation of the catalytic cycle. Mukherjee A; Sen TK; Ghorai PK; Samuel PP; Schulzke C; Mandal SK Chemistry; 2012 Aug; 18(34):10530-45. PubMed ID: 22807308 [TBL] [Abstract][Full Text] [Related]
9. Computational mechanistic elucidation of the intramolecular aminoalkene hydroamination catalysed by iminoanilide alkaline-earth compounds. Tobisch S Chemistry; 2015 Apr; 21(18):6765-79. PubMed ID: 25801822 [TBL] [Abstract][Full Text] [Related]
10. σ-Insertive Mechanism versus Concerted Non-insertive Mechanism in the Intramolecular Hydroamination of Aminoalkenes Catalyzed by Phenoxyamine Magnesium Complexes: A Synthetic and Computational Study. Zhang X; Tobisch S; Hultzsch KC Chemistry; 2015 May; 21(21):7841-57. PubMed ID: 25867790 [TBL] [Abstract][Full Text] [Related]
11. Aluminium-catalysed intramolecular hydroamination of aminoalkenes: computational perusal of alternative pathways for aminoalkene activation. Tobisch S Dalton Trans; 2015 Jul; 44(27):12169-79. PubMed ID: 25801632 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of the intramolecular hydroamination of alkenes catalyzed by neutral indenyltitanium complexes: a DFT study. Müller C; Koch R; Doye S Chemistry; 2008; 14(33):10430-6. PubMed ID: 18844204 [TBL] [Abstract][Full Text] [Related]
13. Computational design of metal-free molecules for activation of small molecules, hydrogenation, and hydroamination. Wang ZX; Zhao L; Lu G; Li H; Huang F Top Curr Chem; 2013; 332():231-66. PubMed ID: 23114498 [TBL] [Abstract][Full Text] [Related]
14. Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations. Ryu JS; Li GY; Marks TJ J Am Chem Soc; 2003 Oct; 125(41):12584-605. PubMed ID: 14531704 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic studies of a palladium-catalyzed intramolecular hydroamination of unactivated alkenes: protonolysis of a stable palladium alkyl complex is the turnover-limiting step. Cochran BM; Michael FE J Am Chem Soc; 2008 Mar; 130(9):2786-92. PubMed ID: 18254623 [TBL] [Abstract][Full Text] [Related]
16. Frustrated Lewis pairs: from concept to catalysis. Stephan DW Acc Chem Res; 2015 Feb; 48(2):306-16. PubMed ID: 25535796 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic insight on the hydrogenation of conjugated alkenes with h(2) catalyzed by early main-group metal catalysts. Zeng G; Li S Inorg Chem; 2010 Apr; 49(7):3361-9. PubMed ID: 20196551 [TBL] [Abstract][Full Text] [Related]
18. Intermolecular hydroamination of vinylarenes by iminoanilide alkaline-earth catalysts: a computational scrutiny of mechanistic pathways. Tobisch S Chemistry; 2014 Jul; 20(29):8988-9001. PubMed ID: 24958273 [TBL] [Abstract][Full Text] [Related]
19. Experimental and Computational Mechanistic Studies of the β-Diketiminatoiron(II)-Catalysed Hydroamination of Primary Aminoalkenes. Lepori C; Bernoud E; Guillot R; Tobisch S; Hannedouche J Chemistry; 2019 Jan; 25(3):835-844. PubMed ID: 30334594 [TBL] [Abstract][Full Text] [Related]
20. The tandem Cope-type hydroamination/[2,3]-rearrangement sequence: a strategy to favor the formation of intermolecular hydroamination products and enable difficult cyclizations. Bourgeois J; Dion I; Cebrowski PH; Loiseau F; Bédard AC; Beauchemin AM J Am Chem Soc; 2009 Jan; 131(3):874-5. PubMed ID: 19119816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]