BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22585238)

  • 1. Immune peptides modelling of Culex pipiens sp by in silico methods.
    Harikrishna N; Rao MS; Murty US
    J Vector Borne Dis; 2012 Mar; 49(1):19-22. PubMed ID: 22585238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A defensin-like antimicrobial peptide from the venoms of spider, Ornithoctonus hainana.
    Zhao H; Kong Y; Wang H; Yan T; Feng F; Bian J; Yang Y; Yu H
    J Pept Sci; 2011 Jul; 17(7):540-4. PubMed ID: 21538709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culex pipiens pipiens: characterization of immune peptides and the influence of immune activation on development of Wuchereria bancrofti.
    Bartholomay LC; Farid HA; Ramzy RM; Christensen BM
    Mol Biochem Parasitol; 2003 Aug; 130(1):43-50. PubMed ID: 14550895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect antimicrobial peptides and their applications.
    Yi HY; Chowdhury M; Huang YD; Yu XQ
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5807-22. PubMed ID: 24811407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs.
    Dassanayake RS; Silva Gunawardene YI; Tobe SS
    Peptides; 2007 Jan; 28(1):62-75. PubMed ID: 17161505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cecropin D-like antibacterial peptides from the sphingid moth, Agrius convolvuli.
    Lee IH; Chang KY; Choi CS; Kim HR
    Arch Insect Biochem Physiol; 1999; 41(4):178-85. PubMed ID: 10421892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characterization of novel hybrid peptides from LFB15(W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method.
    Tian ZG; Dong TT; Teng D; Yang YL; Wang JH
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1097-103. PubMed ID: 19148638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial properties and partial cDNA sequences of cecropin-like antibacterial peptides from the common cutworm, Spodoptera litura.
    Choi CS; Lee IH; Kim E; Kim SI; Kim HR
    Comp Biochem Physiol C Toxicol Pharmacol; 2000 Mar; 125(3):287-97. PubMed ID: 11790350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Oral Defensins Antimicrobial Peptides: A Future Promising Antimicrobial Drug.
    Khurshid Z; Zafar MS; Naseem M; Khan RS; Najeeb S
    Curr Pharm Des; 2018; 24(10):1130-1137. PubMed ID: 29611481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B.
    Alan AR; Earle ED
    Mol Plant Microbe Interact; 2002 Jul; 15(7):701-8. PubMed ID: 12118886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli.
    Xu X; Jin F; Yu X; Ji S; Wang J; Cheng H; Wang C; Zhang W
    Protein Expr Purif; 2007 Jun; 53(2):293-301. PubMed ID: 17300953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis.
    Ye J; Zhao H; Wang H; Bian J; Zheng R
    Toxicon; 2010 Aug; 56(1):101-6. PubMed ID: 20362606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of Anopheles darlingi (Diptera:Culicidae) based on the antimicrobial peptide genes cecropin and defensin.
    Santos EA; Dos Santos ACF; da Silva FS; Queiroz ALN; Pires LLDC; Casseb SMM; Holanda GM; Sucupira IMC; Cruz ACR; Santos EJMD; Póvoa MM
    Acta Trop; 2022 Mar; 227():106285. PubMed ID: 34921765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hainanenins: a novel family of antimicrobial peptides with strong activity from Hainan cascade-frog, Amolops hainanensis.
    Zhang S; Guo H; Shi F; Wang H; Li L; Jiao X; Wang Y; Yu H
    Peptides; 2012 Feb; 33(2):251-7. PubMed ID: 22306820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of eight peptides from Galleria mellonella immune hemolymph.
    Cytryńska M; Mak P; Zdybicka-Barabas A; Suder P; Jakubowicz T
    Peptides; 2007 Mar; 28(3):533-46. PubMed ID: 17194500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structure, chemical synthesis, and antibacterial activity of ABP-dHC-cecropin A from drury (Hyphantria cunea).
    Zhang J; Movahedi A; Wang X; Wu X; Yin T; Zhuge Q
    Peptides; 2015 Jun; 68():197-204. PubMed ID: 25241628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel antimicrobial anionic cecropins from the spruce budworm feature a poly-L-aspartic acid C-terminus.
    Maaroufi H; Potvin M; Cusson M; Levesque RC
    Proteins; 2021 Sep; 89(9):1205-1215. PubMed ID: 33973678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and phylogenetic analysis of a novel salivary defensin cDNA from malaria vector Anopheles stephensi.
    Dixit R; Sharma A; Patole MS; Shouche YS
    Acta Trop; 2008 Apr; 106(1):75-9. PubMed ID: 18275930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptides: properties and applicability.
    van 't Hof W; Veerman EC; Helmerhorst EJ; Amerongen AV
    Biol Chem; 2001 Apr; 382(4):597-619. PubMed ID: 11405223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.