BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 22585480)

  • 1. Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis.
    Morais MP; Fossey JS; James TD; van den Elsen JM
    Methods Mol Biol; 2012; 869():93-109. PubMed ID: 22585480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Protein Glycation Using Phenylboronate Acrylamide Gel Electrophoresis.
    Pereira Morais MP; Kassaar O; Flower SE; Williams RJ; James TD; van den Elsen JMH
    Methods Mol Biol; 2019; 1855():161-175. PubMed ID: 30426417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis.
    Morais MP; Mackay JD; Bhamra SK; Buchanan JG; James TD; Fossey JS; van den Elsen JM
    Proteomics; 2010 Jan; 10(1):48-58. PubMed ID: 19899078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate.
    Rohovec J; Maschmeyer T; Aime S; Peters JA
    Chemistry; 2003 May; 9(10):2193-9. PubMed ID: 12772293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study.
    Alam MM; Ahmad I; Naseem I
    Int J Biol Macromol; 2015 Aug; 79():336-43. PubMed ID: 25982953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis.
    Pereira Morais MP; Marshall D; Flower SE; Caunt CJ; James TD; Williams RJ; Waterfield NR; van den Elsen JM
    Sci Rep; 2013; 3():1437. PubMed ID: 23531746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boronate affinity saccharide electrophoresis: a novel carbohydrate analysis tool.
    Jackson TR; Springall JS; Rogalle D; Masumoto N; Ching Li H; D'Hooge F; Perera SP; Jenkins AT; James TD; Fossey JS; van den Elsen JM
    Electrophoresis; 2008 Nov; 29(20):4185-91. PubMed ID: 18925583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and immunological characterization of Amadori-rich human serum albumin: role in diabetes mellitus.
    Arif B; Ashraf JM; Moinuddin ; Ahmad J; Arif Z; Alam K
    Arch Biochem Biophys; 2012 Jun; 522(1):17-25. PubMed ID: 22516656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of CML-modified proteins in hemofiltrate of diabetic patients by proteome analysis.
    Schmitt S; Linder M; Ständker L; Hammes HP; Preissner KT
    Exp Clin Endocrinol Diabetes; 2008 Jan; 116(1):26-34. PubMed ID: 17926233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced glycated human serum albumin as AGE-carrier protein in enzyme-linked immunosorbent assay.
    Benko B; Turk Z
    Clin Lab; 2008; 54(9-10):331-9. PubMed ID: 19097490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of glycation sites in proteins by high-resolution mass spectrometry combined with isotopic labeling.
    Stefanowicz P; Kijewska M; Kluczyk A; Szewczuk Z
    Anal Biochem; 2010 May; 400(2):237-43. PubMed ID: 20156417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced glycation end-products prepared in solution under high pressure contain epitopes distinct from those formed in the dry reaction at high temperature.
    Staniszewska M; Jarosz J; Jon M; Gamian A
    Arch Immunol Ther Exp (Warsz); 2005; 53(1):71-8. PubMed ID: 15761378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein adsorption on histidyl-aminohexyl-Sepharose 4B. I. Study of the mechanistic aspects of adsorption for the separation of human serum albumin from its non-enzymatic glycated isoforms (advanced glycosylated end products).
    Pitiot O; Folley L; Vijayalakshmi MA
    J Chromatogr B Biomed Sci Appl; 2001 Jul; 758(2):163-72. PubMed ID: 11486825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of albumin glycation on the erythrocyte aggregation: an in vitro study.
    Candiloros H; Muller S; Ziegler O; Donner M; Drouin P
    Diabet Med; 1996 Jul; 13(7):646-50. PubMed ID: 8840099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal glycation of proteins by D-glucose and D-fructose.
    Kańska U; Boratyński J
    Arch Immunol Ther Exp (Warsz); 2002; 50(1):61-6. PubMed ID: 11916310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics.
    Schmitt A; Schmitt J; Münch G; Gasic-Milencovic J
    Anal Biochem; 2005 Mar; 338(2):201-15. PubMed ID: 15745740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced glycation end product (AGE): characterization of the products from the reaction between D-glucose and serum albumin.
    Wu JT; Tu MC; Zhung P
    J Clin Lab Anal; 1996; 10(1):21-34. PubMed ID: 8926563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts" with "advanced lipoxidation endproducts".
    Richter T; Münch G; Lüth HJ; Arendt T; Kientsch-Engel R; Stahl P; Fengler D; Kuhla B
    Neurobiol Aging; 2005 Apr; 26(4):465-74. PubMed ID: 15653175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods.
    Henle T
    Amino Acids; 2005 Dec; 29(4):313-22. PubMed ID: 15997413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein glycation in vivo: functional and structural effects on yeast enolase.
    Gomes RA; Oliveira LM; Silva M; Ascenso C; Quintas A; Costa G; Coelho AV; Sousa Silva M; Ferreira AE; Ponces Freire A; Cordeiro C
    Biochem J; 2008 Dec; 416(3):317-26. PubMed ID: 18651835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.