These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22586078)

  • 1. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.
    Tang J; Germain RN; Cui M
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8434-9. PubMed ID: 22586078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique.
    Kong L; Cui M
    Opt Express; 2014 Oct; 22(20):23786-94. PubMed ID: 25321957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering.
    Kong L; Tang J; Cui M
    Opt Express; 2016 Jan; 24(2):1214-21. PubMed ID: 26832504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast wavefront shaping for two-photon brain imaging with multipatch correction.
    Blochet B; Akemann W; Gigan S; Bourdieu L
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2305593120. PubMed ID: 38100413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging.
    Sahu P; Mazumder N
    Lasers Med Sci; 2020 Mar; 35(2):317-328. PubMed ID: 31729608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution in vivo imaging of mouse brain through the intact skull.
    Park JH; Sun W; Cui M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9236-41. PubMed ID: 26170286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique.
    Kong L; Cui M
    Opt Express; 2015 Mar; 23(5):6145-50. PubMed ID: 25836837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.
    Cha JW; Ballesta J; So PT
    J Biomed Opt; 2010; 15(4):046022. PubMed ID: 20799824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based adaptive optics for two-photon microscopy.
    Débarre D; Botcherby EJ; Watanabe T; Srinivas S; Booth MJ; Wilson T
    Opt Lett; 2009 Aug; 34(16):2495-7. PubMed ID: 19684827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.
    Xiao L; Fang C; Zhu L; Wang Y; Yu T; Zhao Y; Zhu D; Fei P
    Opt Express; 2020 Sep; 28(20):30234-30247. PubMed ID: 33114907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics.
    Ren M; Chen J; Chen D; Chen SC
    Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional in vivo scanning microscopy with inertia-free focus control.
    Dal Maschio M; De Stasi AM; Benfenati F; Fellin T
    Opt Lett; 2011 Sep; 36(17):3503-5. PubMed ID: 21886258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation.
    Tehrani KF; Kner P; Mortensen LJ
    J Biomed Opt; 2017 Mar; 22(3):36012. PubMed ID: 28323304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphoton microscopy in life sciences.
    König K
    J Microsc; 2000 Nov; 200(Pt 2):83-104. PubMed ID: 11106949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep imaging in scattering media with selective plane illumination microscopy.
    Pediredla AK; Zhang S; Avants B; Ye F; Nagayama S; Chen Z; Kemere C; Robinson JT; Veeraraghavan A
    J Biomed Opt; 2016 Dec; 21(12):126009. PubMed ID: 27997019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing.
    Hu L; Hu S; Li Y; Gong W; Si K
    J Biophotonics; 2020 Jan; 13(1):e201900245. PubMed ID: 31622537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-driven adaptive optics for single-molecule localization microscopy.
    Zhang P; Ma D; Cheng X; Tsai AP; Tang Y; Gao HC; Fang L; Bi C; Landreth GE; Chubykin AA; Huang F
    Nat Methods; 2023 Nov; 20(11):1748-1758. PubMed ID: 37770712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue.
    Chaigneau E; Wright AJ; Poland SP; Girkin JM; Silver RA
    Opt Express; 2011 Nov; 19(23):22755-74. PubMed ID: 22109156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic conjugate F-SHARP microscopy.
    Papadopoulos IN; Jouhanneau JS; Takahashi N; Kaplan D; Larkum M; Poulet J; Judkewitz B
    Light Sci Appl; 2020; 9():110. PubMed ID: 32637077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.