These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice. Velotta JP; Jones J; Wolf CJ; Cheviron ZA Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783 [TBL] [Abstract][Full Text] [Related]
6. Adaptive Shifts in Gene Regulation Underlie a Developmental Delay in Thermogenesis in High-Altitude Deer Mice. Velotta JP; Robertson CE; Schweizer RM; McClelland GB; Cheviron ZA Mol Biol Evol; 2020 Aug; 37(8):2309-2321. PubMed ID: 32243546 [TBL] [Abstract][Full Text] [Related]
7. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice. Lyons SA; McClelland GB J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35552735 [TBL] [Abstract][Full Text] [Related]
8. Coordinated changes across the O Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808 [TBL] [Abstract][Full Text] [Related]
9. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice. Coulson SZ; Robertson CE; Mahalingam S; McClelland GB J Exp Biol; 2021 May; 224(10):. PubMed ID: 34060604 [TBL] [Abstract][Full Text] [Related]
10. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes. Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797 [TBL] [Abstract][Full Text] [Related]
11. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Bautista NM; Herrera ND; Shadowitz E; Wearing OH; Cheviron ZA; Scott GR; Storz JF Proc Natl Acad Sci U S A; 2024 Oct; 121(41):e2412526121. PubMed ID: 39352929 [TBL] [Abstract][Full Text] [Related]
12. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice. Lau DS; Connaty AD; Mahalingam S; Wall N; Cheviron ZA; Storz JF; Scott GR; McClelland GB Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R400-R411. PubMed ID: 28077391 [TBL] [Abstract][Full Text] [Related]
16. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus). Van Sant MJ; Hammond KA Physiol Biochem Zool; 2008; 81(5):605-11. PubMed ID: 18729765 [TBL] [Abstract][Full Text] [Related]
17. Function of left ventricle mitochondria in highland deer mice and lowland mice. Mahalingam S; Coulson SZ; Scott GR; McClelland GB J Comp Physiol B; 2023 Mar; 193(2):207-217. PubMed ID: 36795175 [TBL] [Abstract][Full Text] [Related]
18. Fuel Use in Mammals: Conserved Patterns and Evolved Strategies for Aerobic Locomotion and Thermogenesis. McClelland GB; Lyons SA; Robertson CE Integr Comp Biol; 2017 Aug; 57(2):231-239. PubMed ID: 28859408 [TBL] [Abstract][Full Text] [Related]
19. The adaptive benefit of evolved increases in hemoglobin-O Wearing OH; Ivy CM; Gutiérrez-Pinto N; Velotta JP; Campbell-Staton SC; Natarajan C; Cheviron ZA; Storz JF; Scott GR BMC Biol; 2021 Jun; 19(1):128. PubMed ID: 34158035 [TBL] [Abstract][Full Text] [Related]
20. Metabolic recovery from submaximal exercise in hypoxia acclimated high altitude deer mice (Peromyscus maniculatus). Dessureault LM; Tod RA; McClelland GB Comp Biochem Physiol B Biochem Mol Biol; 2024; 274():111004. PubMed ID: 38945522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]