These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22586104)

  • 21. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities.
    Zanatta F; Engler R; Collart F; Broennimann O; Mateo RG; Papp B; Muñoz J; Baurain D; Guisan A; Vanderpoorten A
    Nat Commun; 2020 Nov; 11(1):5601. PubMed ID: 33154374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate, physiological tolerance and sex-biased dispersal shape genetic structure of Neotropical orchid bees.
    López-Uribe MM; Zamudio KR; Cardoso CF; Danforth BN
    Mol Ecol; 2014 Apr; 23(7):1874-90. PubMed ID: 24641728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham's skink, Egernia cunninghami.
    Ofori BY; Stow AJ; Baumgartner JB; Beaumont LJ
    PLoS One; 2017; 12(9):e0184193. PubMed ID: 28873398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of frugivore seed dispersal services under climate change.
    Mokany K; Prasad S; Westcott DA
    Nat Commun; 2014 May; 5():3971. PubMed ID: 24862723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How Dispersal Evolution and Local Adaptation Affect the Range Dynamics of Species Lagging Behind Climate Change.
    Block S; Levine JM
    Am Nat; 2021 Jun; 197(6):E173-E187. PubMed ID: 33989146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of defaunation on plants' capacity to track climate change.
    Fricke EC; Ordonez A; Rogers HS; Svenning JC
    Science; 2022 Jan; 375(6577):210-214. PubMed ID: 35025640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersal abilities favor commensalism in animal-plant interactions under climate change.
    Lemes P; Barbosa FG; Naimi B; Araújo MB
    Sci Total Environ; 2022 Aug; 835():155157. PubMed ID: 35405230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies.
    McCauley SJ; Davis CJ; Werner EE; Robeson MS
    J Anim Ecol; 2014 Jul; 83(4):858-65. PubMed ID: 24237364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change.
    Aguilée R; Raoul G; Rousset F; Ronce O
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):E5741-8. PubMed ID: 27621443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.
    Lemoine NP
    PLoS One; 2015; 10(2):e0118614. PubMed ID: 25705876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies.
    Silva JLSE; Cruz-Neto O; Peres CA; Tabarelli M; Lopes AV
    PLoS One; 2019; 14(5):e0217028. PubMed ID: 31141533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate change-driven range losses among bumblebee species are poised to accelerate.
    Sirois-Delisle C; Kerr JT
    Sci Rep; 2018 Oct; 8(1):14464. PubMed ID: 30337544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Body size and activity times mediate mammalian responses to climate change.
    McCain CM; King SR
    Glob Chang Biol; 2014 Jun; 20(6):1760-9. PubMed ID: 24449019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Species better track climate warming in the oceans than on land.
    Lenoir J; Bertrand R; Comte L; Bourgeaud L; Hattab T; Murienne J; Grenouillet G
    Nat Ecol Evol; 2020 Aug; 4(8):1044-1059. PubMed ID: 32451428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning.
    Lemes P; Loyola RD
    PLoS One; 2013; 8(1):e54323. PubMed ID: 23349850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Status and challenges for conservation of small mammal assemblages in South America.
    Kelt DA; Meserve PL
    Biol Rev Camb Philos Soc; 2014 Aug; 89(3):705-22. PubMed ID: 24450972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.
    Liang Y; Duveneck MJ; Gustafson EJ; Serra-Diaz JM; Thompson JR
    Glob Chang Biol; 2018 Jan; 24(1):e335-e351. PubMed ID: 29034990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech.
    Saltré F; Duputié A; Gaucherel C; Chuine I
    Glob Chang Biol; 2015 Feb; 21(2):897-910. PubMed ID: 25330385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Not all species will migrate poleward as the climate warms: The case of the seven baobab species in Madagascar.
    Tagliari MM; Danthu P; Leong Pock Tsy JM; Cornu C; Lenoir J; Carvalho-Rocha V; Vieilledent G
    Glob Chang Biol; 2021 Dec; 27(23):6071-6085. PubMed ID: 34418236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mountain landscapes offer few opportunities for high-elevation tree species migration.
    Bell DM; Bradford JB; Lauenroth WK
    Glob Chang Biol; 2014 May; 20(5):1441-51. PubMed ID: 24353188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.